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Abstract—Among ML operators today, GEneralMatrix Mul-
tiplication (GEMM)-based operators are known to be key
operators that build the main backbone of ML models. As
their computational overhead dominates the overall execution
time (e.g., 42.8% - 96.6% in our results), GEMM operators have
been the prime optimization targets for fast ML inference.
This led to advanced GPUs and accelerators available today,
which provided significant boost in the GEMM performance
compared to CPUs, aligned with the lesson from Amdahl’s
law. However, accelerating GEMM has significantly shifted
the Amdahl’s law’s landscape for ML inference; due to the
decreased GEMM execution time, the relative execution time
of non-GEMM operators is now significant. Although the
importance of non-GEMM performance is increasing, we have
little knowledge about the non-GEMM performance horizon
in the latest hardware platforms and models.

Therefore, to guide non-GEMM-oriented optimizations, we
conduct a thorough performance analysis of 17 widely adopted
ML models in Hugging Face and Torchvision on workstation
and data center platforms with/without GPUs. We discover
that non-GEMM performance bottleneck is a considerable
issue across all the platforms and models, accounting for
11.3% to 73.6% of total latency, on average. The challenge
significantly aggravates when we apply quantization, which
is a common model compression technique, due to the
boosted GEMM performance and extra non-GEMM operators
for dequantization and requantization. To provide insights
into non-GEMM optimization targets, we demystify the
most dominant non-GEMM operators for each model and
deployment software. We also show that widely adopted
optimizations such as operator fusion do not completely
address the non-GEMM performance bottleneck, where non-
GEMM operators still account for 15% to 48% of total latency.
We will open-source our non-GEMM-oriented benchmark
framework to facilitate research in non-GEMM optimization.

I. INTRODUCTION

The success of machine learning (ML) in various problem
domains, such as computer vision (CV) [24], [25], [33], [38],
[51] and natural language processing (NLP) [7], [19], [56],
made ML workloads pervasive in various computing platforms
from edge to cloud devices. ML model inference involves
billions of multiply-and-accumulate (MAC) operations (e.g.,
497 billions of MAC operations for ResNet 50 [25]). Such
MAC operations originate from GEneral Matrix Multiplication
(GEMM)-based operators, such as CONV2D, Linear, and BMM
(batched matrix multiplication). The GEMM-based operators
dominate in terms of the total execution time on CPUs, as
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Fig. 1. The latency breakdown into GEMM and non-GEMM operators on
AMD EPYC 7763 + NVIDIA A100 GPU. We measure the latency on two
popular models from HuggingFace (a) GPT2-XL (batch 1) [7] and (b) Swin
Transformer (batch 1) [38]].

shown in Therefore, GPUs and accelerators have
focused on the optimization of the GEMM-based operators,
which significantly enhanced the computational performance
(e.g., latency and throughput) of end-to-end ML model
inference.

However, because the GEMM operators are being acceler-
ated, the non-GEMM operators, such as memory operations
(e.g., reshape, view, and transpose), normalization, and logit
computation functions (e.g., Softmax), now account for a
considerable amount of the end-to-end latency, compared to
that of GEMM operators. shows the profiled latency
breakdown into GEMM and non-GEMM operators running
inferences on state-of-the-art large language (GPT2-XL [7]))
and image classification (Swin Transformer [38]]) models. The
motivational data show that the non-GEMM operations now
can account for the majority of the latency with GEMM
acceleration, indicating that we now need to consider non-
GEMM operators as one of the major optimization targets
in the ML system optimization. However, the research com-
munity today lacks a thorough and systematic performance
analysis and characterization of non-GEMM operators in the
latest models, which hinders the development of non-GEMM
oriented optimization techniques.

Therefore, we collect widely-used ML models from Hugging
Face [59] and Torchvision [55] and perform a thorough
performance characterization of of non-GEMM operators
in the 17 latest models of four major task domains: Image
Classification (IC), Image Segmentation (IS), Object Detection
(OD), and Natural Language Processing (NLP). We evaluate



the effect of GPU acceleration on the relative latency across
GEMM and non-GEMM operators in collected models and
conduct deep-dive analysis on the impact of different hardware
platforms (workstation and data center), deployment software,
and common optimizations (operator fusion and quantization).
Based on our case studies, we highlight that the non-GEMM
performance challenge is common in accelerated inferences
and existing optimization techniques (e.g., operator fusion)
cannot completely address the challenges. Also, we demystify
the most time-consuming non-GEMM operators in each model,
which will help the research community identify non-GEMM
operators to be optimized.

To facilitate such research in non-GEMM-oriented opti-
mization techniques, we build an open-source benchmark
specialized in non-GEMM performance anlysis, NoNGEMM
BencH, which will be released after publication. NoNGEMM
BENCH can profile arbitrary non-GEMM operators supported
by PyTorch [44], ONNX [10], and TensorRT [4]], in addition to
the preset of non-GEMM operators collected from the selected
17 popular models, which provides desired flexibility to users
for follow-up research.

We summarize our contributions as follows:

o We shed a light on the changed landscape of Amdhal’s
law in ML system design, which shows the increased
importance of non-GEMM operators in systems with
GEMM accelerations.

e We perform case studies on two different hardware
configurations, workstation and data center, and show
the non-GEMM operators are becoming a major consid-
eration across all platforms.

o We identify different dominant non-GEMM operators
depending on the model and deployment software flow,
which indicates that non-GEMM optimization need to
be specialized for each model and deployment software.

o We analyze the impact of a common non-GEMM-aware
optimization, operator fusion and show that operator
fusion does not completely mitigate non-GEMM bottle-
neck for all models, which motivates follow-up research
in non-GEMM performance optimizations

o We evaluate the performance of non-GEMM operators
with quantization and quantitatively show the non-
GEMM bottleneck aggravates with quantization.

o We open-source NONGEMM BENCH, an extensible bench-
mark flow that enables thorough non-GEMM perfor-
mance characterization for any model supported by
ONNX runtime, TensorRT, and PyTorch, to facilitate
non-GEMM-oriented research.

II. BACKGROUND

A. ML Operators

ML operators are the building blocks of ML models, which
define the computation over one or multiple input tensors.
Examples include convolution (Conv2d), matrix multiplication
(linear, BMM, etc.), activation, and normalization, as listed

in We categorize operators into two classes: GEMM

operation-based ("GEMM operators") and the others ("Non-
GEMM operators"). We discuss each class of ML operators
next.

GEMM-based Operators (GEMM Operators). GEMM-
based operators (or GEMM operators) refer to all the ML
operators that can be represented as a matrix multiplication
operation, which include linear, Conv2d, and batched-matrix
multiplication (BMM). For example, (b) and (d)
illustrate two popular GEMM operators: Linear and Conv2d
operators, respectively. Each operator can be represented into
a perfectly nested loop with multiply-and-accumulate (MAC)
operation in the inner-most loop. Note that variants that are
not matrix multiplication in the default form like Conv2d can
be converted into GEMM (e.g., im2col [14]]), which motivated
the term, GEMM operator.

GEMM-based operators are known to be compute-intensive,
which accounts for the majority of the execution unless
accelerated by GPUs or accelerators, as CPU results in
show. However, they have regular computation patterns that
can be summarized as a perfectly nested for loop. The regular
pattern allows various loop optimization techniques such as
loop reordering, tiling, and parallelization, which is referred
to as dataflow [34], [43], [62] With the dominance of GEMM
operators in execution time and high optimization potential
together, GEMM operators have been the prime optimization
target for acceleration, which led to high-performance GPUs
(e.g., H100 [48]]) and accelerators [31]).

Non-GEMM Operators. Non-GEMM operators refer to
all ML operators other than GEMM operators. They span
various functionalities (e.g., memory layout manipulation and
normalization) other than applying weights to input tensors.
Because of their diverse functionalities, their computation
patterns are often not a perfectly nested loop with MAC,
which can also involve non-linear functions and memory-
oriented operations. For example, [Figure 2| (a) shows non-
maximum suppression (NMS) operator often found in R-
CNN model variants [24], [50]. As found in the example,
the entire operation cannot be summarized into single
perfectly-nested loop, which involve other operations such
as sort and filtering. In addition, the operation involves a
conditional statement, which introduces non-deterministic
behaviors to the operator. The layer normalization example
in (c) also shows another key characteristic of
the non-GEMM operators: non-linear functions. Because of
such characteristics distinguished from GEMM operators,
optimization methodologies for GEMM operators cannot be
applied to accelerate non-GEMM operators.

To understand the extent of the non-GEMM operators,
we analyze non-GEMM operators in 17 recent models in the
computer vision and natural language processing domains. We
select models based on their popularity in the Hugging Face to
obtain realistic workload. We list the models we investigated
in Based on our analysis, we categorize non-GEMM
operators based on their functionality and summarize their

usage in models and characteristics in



<Inputs>
- X: A list of (score, box info)
# score: probability to
# be an object (i.e., a value in [0,1])
# box info: (y1,x1,y2,x2) ;
# coordinates of top-left
# and bottom-right points
- th_score: score threshold
- th_loU: loU threshold
<Output>
- Y: A list of (score, box info)
# len(output) <= len(input)
(a) Non-GEMM: Non-Maximum Suppression (NMS)

X = sort_by_score (X)
X = remove_by_score(X, th_score)
to_be_removed =[]
for i in range(0, len(X)):
for j in range(i+1, len(X)):
loU = compute_loU(X[i], X[j])
if loU > th_loU: «——
to_be_removed.append(j)
Y = remove_overlapping_proposal
return Y

<Inputs>

- X: A tensor of dimension (N, L, D)
# N: Batch size var = ((X - mean) ** 2).mean (dim = -1
# L: Sequence Length std = var.sqrt() <
# D: Embedding/hidden Dimension Y = X - mean)/ std

<Output> return Y

- Y: Normalized Tensor X # X.shape = Y.shape

(c) Non-GEMM: Layer Normalization

mean = X.mean (dim = -1)

Fig. 2.
Layer Normalization [9], and (d) (GEMM) Linear.
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Descriptions of example non-GEMM and GEMM operators. (a) (Non-GEMM) non-maximum suppression [24]], (b) (GEMM) Conv1D (c) (Non-GEMM)

o Normalization. Normalization operators regularize the Output Output Layer Output
data range across a selected dimension using the ‘\\ o ‘ Add -
mean and standard deviation. Examples include Batch- | : m
Norm [28] and LayerNorm [9]], which are widely adopted i \ PZ ‘ GEELU |
in computer vision and NLP models [7]], [24]. RMS ‘\\ RolAlign k3 $
Norm [63]], which is adopted in recent large language m—— | T [EiEysrNGHalZation Il
models [56], is another example of the normalization \ Non-Maximum ‘ g H
function. RMS Norm eliminates the division by standard \‘ S”?ﬁﬁ;ﬁ"’" = —
deviation in typical normalization functions and performs | - g

%Z;’zl(X,- — 1), where X;, n, and p refer to the i-th data, \ Progosal N;gg(i)trk g

number of data, and the mean, respectively. RE‘L ﬁ& ﬁ v

e Activation. Activation operators introduce non-linearity CNN Backbone t t t
into the model. Rectified Linear Unit (ReLU) function [41] mf“mm | (remue EiEeiem), [ aver Nomaliztion ]

is an example of activation operators widely used
in CNN based ML models [25[], [51f], [52]. ReLU
injects non-linearity into the model based on the sign
of the data by applying the element-wise function,
ReLU(X) = Max(0,X). Another variant of activation
operators is the the Gaussian Error Linear Units function
(GELU) [26], which is a popular activation function
adopted in transformer based ML models [7], [33], [38],
[61]]. Unlike ReLU simply gates out negative values to be
0, GELU requires to compute the Cumulative Distribution
Function (CDF) of a Gaussian distribution, which is
often denoted as ¢. GELU multiplies the input X by the
Cumulative Distribution Function (CDF) of a Gaussian
distribution (¢): GELU(X) = X * ¢(X) [26].

¢ Memory Operators. Memory operators are responsible
for the memory allocation and the layout modification
of tensors. For example, Reshape modifies the shape (e.g.
dimension order) of a tensor and return a new view of
the tensor following the new dimension order.

(Ima

(a) CNN Architecture (b) RCNN Models Architecture

—

Input

Input

Layer Input

(c) GPT2 Layer Architecture

ge Classification) (Language Processing)

(Object Detection)

Fig. 3. Architectures of three popular ML model families.

Element-Wise Arithmetic. Element-wise arithmetic
operators refer to all the operations applied on individual
elements in a tensor (other than activations). For example,
(c) contains an element-wise division applied
to scale the elements of tensors in the attention block.
Rol Selection. Rol selection operators are found in
R-CNN variants. [24]], [50]. They filter down bounding
boxes proposed by the region proposal network
(b)) and align the remaining boxes to the objects detected
in the image. Non-Maximum Suppression (NMS) is an
example of Rol Selection, which is described in
Given a list of scores and bounding box information, it
selects bounding boxes by applying the Intersection over
Union (IoU) metric.



TABLE I

INFERENCES USING REAL DATASETS.

NoN-GEMM OPERATORS IN EIGHT SELECTED MODEL VARIANTS FROM[TABLE II| AND THEIR CHARACTERISTICS. EXAMPLE INPUT SHAPES ARE CAPTURED BASED ON

Operator Single Single Non - . Example
Group Operator Model Operation Operand Linearity Dynamicity Reduction Input Shape
ReLu DETR 7 7 [2,64,533]
Activation GELU ViT-116 7 7 [1, 97, 4096]
GELU GPT2-XL 7 ve 1, 8, 6400]
SiLu Llama-2 v v [1, 10, 11008]
LayerNorm Segformer v v v [2, 16384, 32]
BatchNorm2d Segformer v v v [2, 256, 128, 128]
Normalization LlamaRMSNorm Llama v v v [1, 10, 4096]
FrozenBatchNorm2d MaskRCNN v v v [1, 1024, 50,68]
FrozenBatchNorm2d DETR v v v [1, 2048, 25, 34]
LayerNorm DETR v v v [2, 850, 256]
Add Segformer v [2, 16384, 32]
Mul Llama-2 v [1, 10, 11008]
Elmt-wise Arithmetic Neg Llama-2 v [1, 32, 10, 64]
TrueDiv Segformer v [2, 1, 16384, 256]
TrueDiv GPT2-XL v [1, 25, 8, 8]
Contiguous Segformer v v [2, 32, 128, 128]
Contiguous Llama-2 v v [1, 10, 32, 128]
Permute ViT-b16 v v [1, 768, 196]
Permute GPT2-XL v v [1, 8, 25, 64]
Memory Split GPT2-XL v v [1, 8, 4800]
View GPT2-XL 7 7 [1, 3, 1600]
Reshape ViT-b16 v v [1, 768, 14, 14]
Expand ViT-b16 v v [1, 1, 768]
Squeeze Llama-2 v v [1, 1, 10, 128]
Logit Softmax DETR v v v v [1, 25, 8, 8]
Computation Softmax Segformer v v v v [2, 1, 16384, 256]
Rol Selection NMS MaskRCNN v [4663, 4]
Interpolation Interpolate Segformer v [2, 256, 128, 128]

B. ML Models and Popular Tasks

The heterogeneity in non-GEMM operators enabled ML
developers to build models supporting a wide range of
modalities and tasks (e.g. computer vision and NLP). As
highlighted in computer vision (a) and (b))
and NLP (c)) models are characterized by distinct
architectures leveraging unique combinations of GEMM and
non-GEMM operators.

For example, traditional image classification models are
often based on the convolutional neural network (CNN)
architecture, which cascades GEMM (Conv2d) and non-
GEMM (normalization and activation)operators [25], [51f].
Object detection models, such as Mask R-CNN [24], often
utilize CNNs for feature extraction, region proposal, and
classification, as illustrated in (b). Unlike image
classification models, they combine the CNNs with unique
non-GEMM operators such as non-maximum suppression
(NMS) and ROI Align to process and filter the bounding
boxes for objects. On the other hand, recent language
models employ the transformer architecture, which leverages
the attention mechanism introduced in [57]]. Transformers
combine a unique set of GEMM (BMMs and Linear) and non-
GEMM (normalization, memory, and element-wise arithmetic)
operators, as shown in (c).

As we can find in the aforementioned examples, the
model architectures and the combination of GEMM and non-
GEMM operators are diverse. This would mean that the
performance implication of non-GEMM operators would vary
across models, as our motivational data presented in
show. This motivates a thorough characterization study that
investigates (1) if the non-GEMM performance challenge is

pervasive across popular models and (2) how significant their
implication is, under widely adopted optimization techniques
(e.g., integer quantization [29] and operator fusion [42]]).
Therefore, we conduct a thorough case study of the non-
GEMM performance horizon.

III. PERFORMANCE CHARACTERIZATION METHODOLOGY

To understand the realistic performance landscape of the
latest ML models with non-GEMM workloads, we must (1)
capture operator level performances in end-to-end inferences,
(2) use widely-used models by the research community and
industry, (3) cover diverse task domains, and (4) use real
datasets. However, ML Benchmarks available today (e.g.,
MLPerf [47]), unfortunately, do not satisfy all the requirements
since they do not focus on the non-GEMM operators. Long-
tail bench [35] identified a similar problem as this work, but
it focuses on a limited set of custom kernels, which fails to
represent broad task domains. Therefore, to facilitate our non-
GEMM operators analysis and better-understand the impact
of non-GEMM operators on system performance, we develop
a new ML benchmark, NONGEMM BencH. NONGEMM BeNcH
provides operator-level breakdown of end-to-end inference
latency in the operator graph level, which enables detailed
non-GEMM operator performance analysis, as we present
in To capture the performance in the latest ML
workload, we select 17 highly downloaded (more than 10K
downloads on average) models from HuggingFace [1] to
enhance the representativeness of NONGEMM BENCcH and our
analysis. We discuss the models and datasets adopted in
NoNGEMM BENcH in detail and describe the structure of
NoNGEMM BENCH next.
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Fig. 4. An overview of NoNGEMM BEncH flow.

A. Models included in NONGEMM BENCH

lists the NONGEMM BeNcH model registry
which contains 17 models based on state-of-the-art CNN and
Transformer architectures with number of parameters ranging
from 3.7M to 7B, demonstrating the diverse model coverage
of NoNGEMM BEeNcH. The selected models cover four major
task domains in ML, which include Image Classification (IC),
Object Detection (OD), Image Segmentation (IS), and Natural
Language Processing (NLP).
Image Classification (IC). Image classification refers to
a CV task that identifies a class label of a given image.
Image classification models extract features (i.e., high-level
and dimensional information of the input image) from an
input image and report the class label utilizing the features.
NoNGEMM BeNcH includes six most popular IC models in
HuggingFace [1]: Three variants of Vision Transformer [33],
and three variants of Swin Transformer [38].
Image Segmentation (IS). Image segmentation refers to a
computer vision task that identifies the area in a image for
each class. Like IC models, IS models also extract features
and utilize them to identify objects located in an image and
spatially separate them by highlighting pixels that belong to
each object. NoNGEMM BEeNcH includes two state-of-the-art
IS models: Segformer [61] and MaskFormer [13].
Object Detection (OD). Object detection refers to a computer
vision task that identifies the location of objects in an image
and outputs the bounding box of each object. OD models
extract features and generate region proposals, which refer to
the candidate locations and bounding boxes of objects. Using
Region of Interest (Rol) processing non-GEMM operators
in OD models refine raw region proposals generated
by a region proposal network. The refined Rols are used as
inputs to the CNN classifier at the end, and the classifier
determines the class label of objects inside each refined Rol.
NoNGEMM BeNcH includes three popular OD models [?2f]:
FasterRCNN [50], MaskRCNN [24]], and DETR [12].
Natural Language Processing (NLP). NLP refers to tasks
involving the analysis and understanding of human (natural)
language. NLP models extract context and features from an
input text sequence and use the extracted context and features

to perform multiple applications like translation and text
generation [64] [11]. Transformer [57] based DNNs have
become the dominant model architecture in NLP and are the
backbone of popular state-of-the-art generative large language
models like GPT [46] and Llama [56]. (c) shows
the layer architecture of GPT’s transformer. It consists of
a self-attention block built by cascading GEMM operators
with Normalization, Memory, Logit Computation and Element-
wise Arithmetic non-GEMM operators ( [Table ). NoNnGEMM
BeNcH includes six popular NLP models [3]: Bert [19]], three
variants of GPT2 [7], Llama2-7b [56]], and Mixtral 8x7B [30].

B. NoNGEMM BENCH Inputs

As shown in NoNGEMM BencH flow receives
workload and dataset information (default: 17 NoNGEMM
BeNcH models in [Table TI), target deployment flow, and other
configurations such as the batch size and number of runs for
performance characterization.

Models. As described in NoNGEMM BencH
includes a registry of 17 selected popular ML models. Nonethe-
less, we designed NoNGEMM BENCH to be easily expandable
to accommodate rapidly evolving ML models that constantly
introduce new operators. Users can benefit from the features
of our benchmark by simply plugging their new models into
the NoNGEMM BeNcH model registry by specifying
the model class, its weights and any data preprocessor.
Deployment Flow. NoNGEMM BencH supports four popular
inference frameworks: ONNX Runtime [49]], PyTorch [44],
TensorRT [4], and TorchInductor [8].

Datasets. To evaluate the models, NoNGEMM BencH utilizes
real datasets popular in each domain. We use ImageNet 2012
[17] and MS COCO [37]] for computer vision tasks. As for
language models, we use wikitext dataset [39] available on
HuggingFace. For custom models, NoNGEMM BENCH allows
users to specify their own dataset for their models.
Configurations. Users can specify detailed configurations for
the performance characterization using NoNGEMM BENCH.
The configurations include the batch size, the number of
profiling iterations, and the target device.



TABLE II TABLE III
Tasks AND MoDELS EVALUATED 1N [SECTION IVI HARDWARE PLATFORM CONFIGURATIONS USED FOR CASE STUDIES.
Application Models # Params Dataset D Class CPU GPU
ViT base (Vt-b) [33] 307M Device Device Mem. | TOPS
ViT large (Vt-I) [33] 307M A Data Center | AMD EPYC 7763 | Nvidia A100 80 GB 624
I ViT huge (Vt-h) [33] 632M B Workstation | Intel i9-13900K Nvidia RTX 4090 24 GB 660
mage —— = ImageNet
. > Swin tiny (Sw-t) [38] 29M
Classification (IC) - [17]
Swin small (Sw-s) [38] 50M IV. CASE STUDIES
Swin base (Sw-b) [38] 88M !
Object FasterRCNN (FRCNN) [50] 42M coco We conduct a thorough performance analysis of models in
Detestion (OD) MaskRCNN (MRCNN) [24] M B ‘
e DETR [12] M Table 1] on a data center and a workstation-class platform,
Image Maskformer (MF) [13] 102M COCO as listed in [Table Il We employ PyTorch for our the
Segmentation (IS) SegFormer (Seg) [61] 3.7M [37] . . . .
GPTZ [7] TI7M main performance characterization and use ONNX Runtime,
Natural Language GPT2 Large (gpt2-]) I[7] 762M wikitext TensorRT, and TorchInductor for deep-dive studies (e.g., the
Processing (NLP) GPT2 X-Large (gpt2-x1) 7] 1.5B {39 . t of depl t fl hoi d t fusi )
Tlama 278 [5] S impact of deployment flow choice and operator fusion).
Bert [19] 110M We first focuse on the GEMM and non-GEMM performance
Mixtral 8x7B [30] 46.7B

C. NoNGEMM BENCcH Outputs

NoNGEMM BENCH generates many statistics organized into
three categories: performance, workload, and non-GEMM-
specific reports.

Performance Report. The performance report includes
key performance metrics such as the end-to-end latency with

operator level break-downs and the end-to-end
energy consumption (Figure 5).

Workload Report. The workload report includes the types
of operators and the shape of the tensors for each operator
captured during inference on realistic data.

Non-GEMM Report. The non-GEMM report provides
insights on non-GEMM operators, such as the number of
operator variants of the same class of non-GEMM operator
(e.g., DETR [12] employs two variant of BatchNorm, a custom
implementation and one in the PyTorch operator library) and
non-GEMM operator trace on different domains.

D. NoNGEMM BENcH Performance Characterization Flow

NoNGEMM BENCcH's software flow accepts inputs described
in and generates outputs described in
Internally, NONGEMM BencH includes graph extrac-
tor, data preprocessing, and performance profiling modules.
Graph Extractor. The Graph Extractor module extracts
the operator graphs of input models based on the selected
deployment flow. NoNGEMM BENcH utilizes graph exporters
in the HuggingFace Transformers [59] and PyTorch.

Data Preprocessing. The Data Preprocessing module includes
model-specific preprocessing functions that fetch raw data
from the target dataset, clean the data, and apply desired
transformations (e.g., tokenization and image to tensor).
Performance Profiling. The Performance Profiling (PP)
module launches the inferences, collects performance statistics,
and generates output reports discussed in The
module selects appropriate profiling functions based on the
deployment flow choice. For PyTorch, the PP module utilizes
the PyTorch Profiler [5]. For TensorRT [6]], the PP module
leverages its profiling APIs. For ONNX Runtime [49], the PP
module invokes Execution Provider profiling.

horizon (Section IV-A). Also, we provide deeper insights into

the non-GEMM performance horizon by investigating the
impact of deployment flow and operator fusion (Section IV-B),
and the impact of quantization (Section IV-C).

A. Non-GEMM Performance Characterization Results

We conduct a performance characterization study using
PyTorch and present the results in Aligned with
what we observed in the relative contribution of
non-GEMM operators to the end-to-end latency significantly
increases after GEMM acceleration using a GPU, from 17.2%
to 42.3%, on average. However, we observe each model show
different trends, mainly affected by the non-GEMM operator
types and the number of GEMM and non-GEMM operators in
the original model. We summarize the most time-consuming
non-GEMM operators in from the data center class
platform (Platform A), which shows the diversity of the
dominating non-GEMM operators in each model. We highlight
some notable models in each task category and delve into
the details of their non-GEMM performance.

IC Task: Swin Transformer. For every Swin Transformer
variant(Sw-t, -s, and -b), the memory operator group is the
most latency-dominant non-GEMM operator group, which
accounts for 32% of the total latency, on average, on data cen-
ter platform with GPU acceleration. Those memory operators
originate from the Swin Transformer’s unique window shape
(cross-shaped) [38]], which is not well-aligned with memory
layout of tensor data organized in dimension orders.

OD Task: DETR. After GPU acceleration, DETR has shown
significant non-GEMM operator presence, which accounts
for 65.8% of the total latency, on average. The major source
of the non-GEMM latency is in the normalization operators,
whose percentages are 35% and 32% on Platforms A and
B, respectively. We observe the normalization functions are
based on a custom implementation, which are identified as
independent kernel. Kernel launch overheads accumulated
for independent runs for the custom normalization function
significantly contribute to the non-GEMM latency. However,
we also observe that an advanced deployment software
(TensorRT) can fuse those operators and significantly improve
the non-GEMM performance. We discuss the details later

in Section TV-BI
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Fig. 5. End-to-End inference GPU energy consumption of models running on the Data Center (CPU + GPU) configuration.

TABLE IV
MOST TIME-CONSUMING NON-GEMM OPERATOR GROUPS FOR SELECTED MODELS
(PLATFORM A, WITH GPU ACCELERATION, AVERAGE ACROSS BATCH SIZES).

Task Operator Latency
Domain Model Group Percentage (%)

Vt-b Norm 14.0
Vit-1 Norm 13.3
Image Vt-h Norm 11.2
Classification Sw-t Memory 31.8
Sw-s Memory 33.1
Sw-b Memory 32.8
FRCNN Elmt-wise Arith. 344
Object Detection MRCNN Elmt-wise Arith. 33.6
DETR Norm 34.8
Image Segmenation ME Memory 40.8
Seg Normalization 17.4
gpt2 Act 30.2
GPT2-L Act 29.9
NLP GPT2-XL Act 28.1
Llama2 Norm 14.9
bert Norm 13.1
Mixtral Memory 43.1

IS Task: Maskformer. MaskFormer utilizes Swin Trans-
former as its backbone, which introduces many memory
operators as we discussed for Swin Transformer. As a result,
memory operator becomes the most dominant non-GEMM
operator, which accounts for 40.8% of the total latency, on

average, as we can observe in ().

NLP Task: GPT2. As we observe in (h) for both
platforms, the latency of non-GEMM operators in GPT2
variants is considerable, which account for 45.0%, on average.
The most dominant non-GEMM operator is an activation
function, GELU, which accounts for 26.4% of the total latency.

Summary. We observe GPU acceleration significantly
increases the percentage of non-GEMM operators in the
end-to-end latency, which amplifies the importance of non-
GEMM operators in the performance optimization process.
Also, we observe the most dominant non-GEMM operators
are diverse depending on the model. The results indicate
that an optimization technique tailored for a single operator
cannot fully address the non-GEMM performance challenge,
which motivates a holistic optimization approach for wide
non-GEMM operators or a balanced specialization for a set
of non-GEMM operators in a target workload.

B. The Impact of Deployment Flow on Non-GEMM Performance

Deployment flows such as ONNX Runtime [49] and
TensorRT [4] are widely used for serving model inferences.
Such flows apply various optimizations to each model, which
includes the computational graph optimizations (e.g., operator
fusion) and backend assignment (e.g., utilizing Tensor Core
in Nvidia GPUs). To understand the impact of deployment
frameworks on the non-GEMM operator performance, we
conduct two case studies: (1) comparing PyTorch and ONNX
Runtime (ORT) results on LLMs (focus: general optimizations
w/o operator fusion) and (2) comparing PyTorch, TorchInduc-
tor, and TensorRT results (focus: operator fusion).

[Case Study 1] Non-GEMM Performance on LLMs across
PyTorch and ORT. We profile the GEMM and non-GEMM
performance of two LLMs (GPT2 and Llama2) on the platform
A, using the CUDA execution provider in ORT. As the results
presented in show, we observe the presence of
non-GEMM operators significantly increase, from 52.6% to a
80.75%, on average. We observe the percentage of memory
operators significantly increases if we switch from PyTorch
to ORT, from 3.2% to 66.8%, although the absolute end-to-
end latency decreases. Such a result originates from ORT’s
significant performance boost of other operators (Lllma2)
and ORT’s limited efficiency on memory operators (GPT2-
XL). Many memory operators in the evaluated LLMs are not
supported by the CUDA execution provider in ORT, which
leads to inefficient execution on CPUs involving costly data
transfer between a CPU and a GPU. Combined with the
high frequency of such operators, the relative contribution
of memory operators to the end-to-end inference increases
significantly, as shown in (b). The results imply
two insights: (1) Model deployment flow can significantly
aggravate the non-GEMM performance challenge and (2)
the dominant non-GEMM operators differ depending on the
operator support in a deployment flow.

[Case Study 2] Non-GEMM Performance with Operator
Fusion. Operator fusion is one of the key optimization
technique for accelerating inference workloads [4]], [16]], [27]],
[32], [42]], [54]). Operator fusion combines multiple operators in
a single kernel to reduce the number of costly kernel launches
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Fig. 6. Latency break-downs of NoONGEMM BENcH models into the operator granularity. We show CPU-only (left column) and CPU+GPU (right column)

results on two evaluated platforms listed in

and minimize the number of redundant offchip memory
accesses [42]. TensorRT is a widely adopted inference
framework released by Nvidia that applies the operator
fusion technique targeting GPUs. Operator fusion in TensorRT
detects specific patterns (e.g., three consecutive element-wise
operators [4]) in the operator graph and fuses nodes captured
in the patterns to enhance inference performance by reducing
redundant memory accesses around non-GEMM operators.
To understand the impact of operator fusion on the non-
GEMM performance, we conduct a case study on four models
listed in comparing TensorRT (with fusion) and
PyTorch (without fusion). We present the results in
which shows the inference latency breakdown between GEMM

and non-GEMM operators on Platform A (data center class).
The results indicate that fusion mitigates the non-GEMM
bottleneck, but it does not completely address the challenge.
For example on Swin-b, after applying operator fusion by
switching to TensorRT from PyTorch, the contribution of non-
GEMM operators to the total latency changes from 56.4% to
32.2%, on average. The reduction in the percentage is based on
the non-GEMM performance improvement via operator fusion,
which reduces 88.6% of latency, as summarized in
However, the non-GEMM operators still account for 32.2% of
total latency. This shows that operator fusion cannot eliminate
the non-GEMM performance challenge and motivates further
studies toward non-GEMM performance optimization.
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Although most results indicate a considerable impact of non-
GEMM even after operator fusion, we observe that TensorRT
operator fusion on the DETR model is exceptionally effective.
Therefore, we conduct a deep-dive study, investigating the
percentage of fused non-GEMM operators (i.e., fusion rate) and
performance improvements after fusion, as listed in
We observe the strong non-GEMM performance improvements
for DETR originates from high fusion rate of 30%, which led to
13.5%x non-GEMM speedup. This leads to the large percentage
reduction of non-GEMM in the total latency, from 66.5% to
18.5%, on average.

However, the fusion rate is not the only factor that
determines the non-GEMM speedup. For example, DETR
and Segformer have similar fusion rates (30% and 27%,

TABLE V
THE NON-GEMM LATENCY BEFORE AND AFTER APPLYING FUSION WITH
TENSORRT. THE VALUES BETWEEN BRACKETS REPRESENT THE PERCENTAGE
WITH RESECT TO THE TOTAL INFERENCE LATENCY.

Model Non-GEMM Non-GEMM Latency
Fusion Rate | Before Fusion | After Fusion
Swin-t 8.8% 7.53 ms (56.4%) | 0.97 ms (39.0%)
Swin-b 7.0% | 14.59 ms (56.4%) | 1.65 ms (32.3%)
DETR 30.0% | 32.17 ms (66.4%) | 2.38 ms (18.5%)
Segformer 27.0% 5.57 ms (41.0%) | 2.33 ms (41.0%)

respectively), but the amount of non-GEMM performance
improvements are significantly different: 13.5x and 2.39x,
respectively. We analyze the execution trace and identify
the fusion pattern around batch normalizations as the main
source of the difference. Most batch normalization operators
(100% of total) in DETR were fused with GEMM-operators
(CONV+BN+ReLu pattern) while those in Segformer were
fused with other non-GEMM operators (97.8% of total). The
results indicate that the effectiveness of operator fusion relies
on not only the overall fusion rate but also the fusion patterns.
Our observation confirms that the operator fusion cannot fully
address the non-GEMM performance challenge, even if it can
be very effective on some patterns.

C. The Impact of Quantization Non-GEMM Performance

Quantization refers to the model optimization technique,
which reduces the bit precision of model weights and/or
activations to enhance the computational performance and
efficiency of DNN inference. Quantization is a widely-adopted
technique [29]), including heavy models like LLMs [18],
, , . LLM.int8() is a state-of-the-art quantization
method, which quantizes more than 99% of the linear layers in
OPT LLM to an 8-bit precision. Therefore, we adopt LLM.int8()
and characterize GEMM and non-GEMM performance of
Llama3 on Platform A to understand the impact of quan-
tization on the non-GEMM operator performance problem.

As the results in show, we observe that non-GEMM
operators dominate the latency after quantization, changing
from 29.3% to 76.7%, on average. Such a significant shift
in the latency distribution is mainly based on the GEMM
performance improvements from 8-bit arithmetic, which
reduced the latency by 38.2%, on average. However, based on
our analysis on the execution traces, non-GEMM performance
aggravates because the 8-bit data need to be dequantized and
re-quantized for non-GEMM operators, which requires 16-
bit floating point arithmetic. This introduced 6510 additional
non-GEMM operators into the computation graph, which led
to a significant increase of the non-GEMM latency by 5.6 x
after quantization. Combined together, the overall percentage
of non-GEMM operators in the total latency dominate after
quantization, which makes non-GEMM operators as the major
optimization target.

In the case study on Llama3 8B, we observe the
element-wise arithmetic operators originate from dequantiza-
tion/requantization (DQRQ) process dominate in the inference
latency, which adds 20% extra non-GEMM operators to
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the original computational graph. Also, we observe longer
sequence length leads to higher percentage in the element-
wise arithmetic operators. For example, as we increase the
sequence length from 512 to 8192, the latency percentage
of element-wise arithmetic operators increase from 31.8%
to 63.8%. As current trends in the LLMs are toward longer
sequence lengths [7], [20], the non-GEMM performance
issues in longer sequences originating from DQRQ costs will
aggravate, which motivates efforts in non-GEMM performance
optimization.

D. Key Observations and Insights
We summarize our main observations and insights:

o After GEMM acceleration, non-GEMM becomes a major
optimization target regardless of the hardware platforms.

o Specialized optimization for one non-GEMM is not
effective due to the diversity in dominant non-GEMM.

o Operator fusion cannnot fully address non-GEMM perfor-
mance challenge: Although it can significantly improve
non-GEMM performance, but its effectiveness heavily
depends on the model.

o Operator support in deployment flows significantly
affects the non-GEMM performance.

¢ Quantization significantly aggravates the non-GEMM per-
formance challenge due to the imbalanced speedup across
GEMM and non-GEMM and quantization/dequantization
costs around non-GEMM operators

V. RELATED WORKS

ML Inference Benchmarks. Many end-to-end inference
benchmarks [23], [47] do not capture operator level perfor-
mance breakdowns. MLPerf Inference [47]], an industry stan-
dard inference benchmark, offers a flexible and standardized
framework to evaluate the performance of inference systems.
MLPerf Inference framework defines performance metrics
and workloads, and supports measuring the performance of
realistic inference scenarios across a wide range of software
and hardware systems. Nevertheless, MLPerf does not offer
any operator-level fine-grained latency breakdowns, which
makes it unsuitable for understanding the implications of
non-GEMM operators on the inference performance. Our

work provides fine-grained operator level latency breakdowns
to understand the impact of non-GEMM operators on the
end-to-end inference performance.

Non-GEMM Characterization. Previous works [15], [22],
[350, [45], (53], [58] investigate non-GEMM operators, how-
ever their characterization and optimization focus on a limited
set of operators and applications. Longtail bench [35] proposes
a microbenchmark specific to a limited set of non-GEMM
operators from selected computer vision models. It profiles
operators without a compute library implementation in a
standalone setting, using randomly generated data. Because
Longtail bench is a microbenchmark suite, it cannot be used
to capture realistic interplay between GEMM and non-GEMM
operators in real models, which provides insights for inter-
operator optimizations. In addition, Longtail bench does not
provide general insights on non-GEMM performance because
it focuses on a specific computer vision application. Our
work extends on these efforts by studying the non-GEMM
performance of 17 popular models in realistic end-to-end
inference scenarios covering various task domains. Tandem
Processor [22] highlights the importance of non-GEMM
operator-oriented optimization in ML inference, and pro-
poses a co-processor architecture to mitigate the non-GEMM
overhead. Tandem Processor characterized the non-GEMM
performance in 7 models and identify non-GEMM operators as
the emerging bottleneck after accelerating GEMMs. Although
Tandem is a pioneering work in non-GEMM optimization,
our work provides additional and broader insights beyond
it. Our work evaluates 17 widely adopted models across task
domains and offers detailed case studies analyzing the impact
of widely adopted optimization techniques, operator fusion
and quantization, on the non-GEMM performance.

VI. CoNCLUSION

Accelerating GEMM operators in ML inference have
changed the major bottleneck from GEMM to non-GEMM
operators. To understand the latest GEMM/non-GEMM per-
formance landscape with GEMM acceleration, we conducted
a thorough performance analysis of non-GEMM operators
in the latest models in various task domains and platforms.
The results confirm the increasing importance of non-GEMM
performance and show that common model optimizations
(e.g., quantization) can significantly aggravate the non-GEMM
performance challenge. The dominant non-GEMM operators
are diverse across models, which indicates that a specialized
optimization targeting a specific operator cannot solve the
non-GEMM performance challenge. We also show that non-
GEMM-oriented optimization such as operator fusion cannot
fully address the non-GEMM performance challenge.

Our performance anlysis results imply that now we need
to consider non-GEMM operators as a major optimization
target and develop new hardware and software techniques to
optimize non-GEMM performance. The non-GEMM profiling
software we used in this study, NoNGEMM BencH, will be
released as open-source software, which will contribute to
the follow-up research for non-GEMM optimization.
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ARTIFACT APPENDIX
A. Abstract

This appendix describes the workflow to run NoNGEMM
BeENcH and reproduce the results reported in the paper.

B. Artifact check-list (meta-information)

e Algorithm: Profiling functions are deployment flow specific.

We use the PyTorch Profiler [5] for PyTorch, EP Profiling for

ONNX RUNTIME [49], and TensorRT Open Source Software

(OSS) for TensorRT [6].

Program: Python 3.10, CUDA 12.6.

Model: Please refer to [Table 11}

Data set: Please refer to

Run-time environment: Tested Environments: Ubuntu 22.04,

Linux Mint 21.1, and MacOS 14.2.1.

e Hardware: AMD EPYC 7763 CPU, 1TB DDR4 RAM, 1 x
NVIDIA A100 80GB (PCle), Intel 19-13900K, 64 GB DDR5 RAM,
and Nvidia RTX 4090 24GB (PCle).

o Execution: Automated Scripts. Please refer to the README
file in the Github repository.

e Metrics: Latency.

e Output: Plots in PNG format, and the corresponding data in
csv format. The automated scripts plot the operator level end-
to-end inference latency breakdown of all NoNGEMM BEncH
profiled models.

o Experiments: Please refer to for more details.

e How much disk space required (approximately)?: Ap-
proximately 100 GB to store the models, the datasets, and the
collected profiling traces.

e How much time is needed to prepare workflow (approx-
imately)?: Approximately, setting up the workflow requires
around 30 minutes.

e How much time is needed to complete experiments
(approximately)?: Approximately 10 hours.

o Publicly available?: https://doi.org/10.5281/zenodo.15043135

e Code licenses (if publicly available)?: MIT License.

e Archived (provide DOI)?: 10.5281/zenodo.15043135

C. Description

1) How to access: The source code is available on
Zenodo at https://doi.org/10.5281/zenodo.15043135, or on
Github at https://github.com/UCI-ISA-Lab/NonGEMM-Bench-
ISPASS25.git.

2) Hardware dependencies: To reproduce the paper’s results,
the following systems are required:

e Server with an AMD EPYC 7763 CPU, 1TB DDR4 RAM,
1x Nvidia A100 80GB GPU. (We note that the Mixture of
Experts model profiling requires 4x Nvidia A100 80GB
GPUs.)

e Workstation with an Intel 19-13900K, 64 GB DDR5 RAM,
1x Nvidia RTX 4090 24 GB GPU.

Nevertheless, our workflow runs on any typical laptop,
workstation, or server system with a CUDA-capable GPU.

3) Software dependencies:

e Python 3.10

e CUDA 12.6

e TensorRT 10.4.0.26

o TensorRT Open Source Software

e PyTorch

o Torchvision

e ONNX Runtime

o Hugging Face Transformers

e Hugging Face Datasets

e Hugging Face Optimum

o Hugging Face Accelerate

¢ Matplotlib

e COCO API

o Access to Llama 2 Weights on Hugging Face

o Access to Llama 3 Weights on Hugging Face

e Access to Mixtral 8x7B Weights on Hugging Face

4) Data sets: We use three publicly available datasets

highlighted in ImageNet [17], COCO [37]], and
wikitext [39]

5) Models: We use 17 popular pretrained models from
Huggingface and Torchvision. Please refer to for the
detailed list.

D. Installation

1) PyTorch and ONNX Runtime Flow Software Dependency
Installation:

cd torch_flow

conda create -n ng-torch python=3.10

pip install -r requirements.txt

## After setting up the conda environment,
## Install the COCO dataset dependencies.

V V V V V

Please refer to the code base for more details.
2) TensorRT Flow Software Dependency Installation:

> cd trt_flow
> conda create -n ng-trt python=3.10
> pip install -r requirements.txt

After setting up the conda environment, please
refer to the TensorRT OSS Github repository
(https://github.com/NVIDIA/TensorRT/tree/release/10.4)

to setup TensorRT.

. Experiment workflow

cd torch_flow
conda activate ng-torch

bash run_ispass_all.sh

cd ../onnx_flow

bash run_ispass_all.sh

cd ../trt_flow

conda activate ng-trt

## Set the path to your TensorRT 0SS
## installation in setup.sh

bash run_ispass_all.sh

V VV VYV VYV VYV VYV D™

Note: Before running the experiments, environment vari-
ables and global constants should be properly set to configure
the path to the datasets and to the TensorRT tools. Please
refer to the README file in the codebase.

## Set the path to ImageNet and COCO datasets in run.py



F. Evaluation and expected results

Running the run_ispass_all.sh scripts in every subdi-
rectory will reproduce [Figure 6] [Figure 7|, [Figure 8 and

The scripts will generate the plots and the
corresponding CSV data in the torch_flow/summary,
onnx_flow/fig6_onnx, and trt_flow/fig7_trt. The raw
data is stored in non-gemm-out directory. The reproduced
latency results are expected to be close to the results in the
paper, but not an exact match because of potential differences
in the hardware or software environment.

G. Experiment customization

The provided scripts run the entire evaluation presented
in the paper. The users can customize their experiments by
modifying the following files:

o Modifying datasets and profiling settings: Please
modify corresponding variables in torch_flow/run.py.

¢ Profiling new models: Please refer to ModelProfile
class in torch_flow/run.py and add the desired model
to the file.

H. Methodology

Submission, reviewing and badging methodology:

o https://www.acm.org/publications/policies/
artifact-review-and-badging-current
o https://cTuning.org/ae
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https://www.acm.org/publications/policies/artifact-review-and-badging-current
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