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Goals of This Lecture

* Understanding convolutional neural network
(CNN) computation for inference

* Learn how to implement hardware using
Bluespec System Verilog (BSV)

* Implement a simplified CNN accelerator using
BSV

« Understand research opportunity around deep
learning accelerators



Lecture Schedule

* Day 1
— Convolutional Neural Networks (CNNs)

— Bluespec System Verilog (BSV) Basic Syntax and
Combinational Logic Implementation

* Day 2
— BSV sequential logic and execution model
— Traffic in CNN Accelerators

 Day 3
— Processing Element
— Hierarchical Module Design with BSV



Day 1 Agenda

« Convolutional Neural Networks (CNNs)

— Applications

— CNN structure

— Layer structure and computation

— CNN accelerator structure overview

+ Bluespec System Verilog (BSV)
— BSV Overview
— Basic Syntax

— Combinational logic



Deep Learning Algorithms

« Convolutional Neural Network (CNN)

— Convolution-based deep neural network
— Currently, the most popular DNN

* Recurrent Neural Network (RNN)

— Considers temporal context
— Emerging DNN

» Spiking Neural Network (SNN)

— Mimic brain activity
— Alternative DNN



CNN Applications

- Image/Video recognition
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CNN Applications

* Natural Language Processing (NLP)
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Image source: Standford CS224n (http://web.stanford.edu/class/cs224n/)

* Recurrent Neural Network (RNN) is better for accuracy



CNN Applications

* Drug Discovery

Image source: |. Wallach et al., AtomNet: A Deep Convolutional Neural network for Bioactivity Prediction in
Structure-based Drug Discovery, aiXiv:1510.02855, 2015




Training vs. Inference

« Training: Tuning parameters using training data
- Stochastic gradient descent is the most popular algorithm

- Training in data centers and distributing trained data is a
common model

- Because training algorithm changes rapidly, GPU cluster is
the most popular hardware (Low demand for application-
specific accelerators)

* Inference: Determining class of a new input data

- Using a trained model, determine class of a new input data
- Inference usually occurs close to clients

- Low-latency and power-efficiency is required (High demand
for application specific accelerators)



Day 1 Agenda

« Convolutional Neural Networks (CNNs)

— CNN structure
— Layer structure and computation
— CNN accelerator structure overview

+ Bluespec System Verilog
— BSV Overview
— Basic Syntax

— Combinational logic



CNN Structure Overview

Convolutional Layers Summarize
(Feature Extraction) features

“Palace”

Intermediate
features




Realistic CNN Structure (Alexnet)
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Image source: Alex Krizhevsky et al., ImageNet Classification with Deep Convolutional Neural Networks, NIPS, 2012




Realistic CNN Structure (VGGNet-16)
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Image source: Heuritech blog (https://blog.heuritech.com/2016/02/29/a-brief-report-of-the-heuritech-
deep-learning-meetup-5/)

ResNet, GoogleNet, etc.

13



Day 1 Agenda

« Convolutional Neural Networks (CNNs)

— Layer structure and computation
— CNN accelerator structure overview

+ Bluespec System Verilog (BSV)
— BSV Overview
— Basic Syntax

— Combinational logic



Layers in CNN

« Convolutional Layer

— Feature extraction
— The most computation-dominant layer in CNNs

* Pooling Layer
— Reduce the dimension of input/output feature map

 Activation Layer
— Normalize input/output feature map values

 Fully-connected Layer



Convolutional Layer: Overview

Input Fmaps (1)
Output Fmaps (0)

Filters (W)

« X —>

e e

« Sliding window operation over input featuremaps

Image source: Y. Chen et al., Eyeriss: A Spatial Architecture for Energy-Efficient Dataflow for Convolutional
Neural Networks, ISCA 2016



Convolutional Layer: Computation

for(n=0; n<N; n++) { // Input feature maps (IFMaps)
for(m=0; m<M; m++) { // Weight Filters
for(c=0; c<C; c++) { // IFMap/Weight Channels
for(y=0; y<H; y++) { // Input feature map row
for(x=0; x<H; x++) { // Input feature map column
for(j=0; j<R; j++) { // Weight filter row
for(i=0; i<R; i++) { // Weight filter column
O[n][m][x][y] += W[m][c][i][j] * I[n][c][y+j][x+i]}}}}}}}

4 4

Accumulation Multiplication



Convolutional Layer: Sliding Window Operation

Multi-dimensional Input featuremaps
Trained Data Data to process



Convolutional Layer: Sliding Window Operation

s

[_Filter weight

Dlnput featuere map Partial S
“Partial Sum”

1) Multiply each element (input * filter) &~

2) Accumulate all the (input * filter) values

3) Move filter to a dimension ., . W (Channel)”

19



Convolutional Layer: Sliding Window Operation

i

[_Filter weight
D Input featuere map

4) Repeat the same process (1-3) until the
filter reaches the edge




Convolutional Layer: Sliding Window Operation

g

[_Filter weight
D Input featuere map

5) Move on to the next row and repeat the
same process (1-4)




Convolutional Layer: Sliding Window Operation

i

[_Filter weight
D Input featuere map

6) Repeat the same process (1-5) until the
filter reaches the final pixel of input feature
map




Convolutional Layer: Sliding Window Operation

i

[ Filter weight
D Input featuere map

7) Repeat the same process (1-6) for all the
other channels




Convolutional Layer: Sliding Window Operation

SEdiees s

Partial Sums  Partial Sums  Partial Sums Output
(B-Channel)  (G-Channel) (R-Channel) Feature map

8) Accumulate channel partial sums element-
by-element to get output feature map




Convolutional Layer: Example
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Convolutional Layer: Example

Channel partial sum[0][0] =

1x0 +2x1 +3x0
+(-2)x2+0x4 +(-1)x3
+5x5 +(-2)x2+4x7
=44




Convolutional Layer: Example

Channel partial sum[0][1] =

1x1 +2x0 +3x1
+(-2)x4+0x3 +(-1)x1
+5x2 +(-2)x7+4x2
= -1




Convolutional Layer: Example

Output
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Decreased dimension? P
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Convolutional Layer: Zero-padding
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Convolutional Layer: Computation

for(n=0; n<N; n++) { // Input feature maps (IFMaps)
for(m=0; m<M; m++) { // Weight Filters
for(c=0; c<C; c++) { // IFMap/Weight Channels
for(y=0; y<H; y++) { // Input feature map row
for(x=0; x<H; x++) { // Input feature map column
for(j=0; j<R; j++) { // Weight filter row
for(i=0; i<R; i++) { // Weight filter column
O[n][m][x]ly] += W[m]([c][il[i] * I[n][cIly][x]}}}}}}}

4 4

Accumulation Multiplication

Massive independent multiplications : :
_ _ ‘ Massive parallelism!
Massive accumulations

30



Pooling Layer

+ Selecting Pixels using Pooling Window
Ex) Max Pooling

2 B

| o]
o] [

Feature map

- Pooling Window




Pooling Layer

+ Selecting Pixels using Pooling Window
Ex) Max Pooling
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Pooling Layer

+ Selecting Pixels using Pooling Window
Ex) Max Pooling
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Feature map

- Pooling Window




Pooling Layer

+ Selecting Pixels using Pooling Window
Ex) Max Pooling

o ]os

Feature map

- Pooling Window
Reduces feature map dimension!
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Activation Layer

 Applying a non-linear function

ReLU

1.0 s ——

R(z) =max(0, 2)

¢(z) = l4+e™*
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00} e

Sigmoid function Rectified Linear Unit (ReLU) function

* Add non-linearity to neural networks
« Normalizes feature map values




Fully-connected Layer

 Determining Output Using Gathered Features
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Fully-connected Layer

 Determining Output Using Gathered Features

has oval
shape?
is human
has hair on 5 No!
the top? face:

has ears?

Features FC Layer Final Output
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Fully-connected Layer: Computation

« Convolutions with Multiple Filters

Filter 1
Output feature map 1

38



Fully-connected Layer: Computation

« Utilizing Each Feature to Determine Output

x@-l-

Output feature map O FC filter O

Final Value

+ Output feature map 1 FC filter 1
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Layers in CNN

« Convolutional Layer

— Feature extraction
— The most computation-dominant layer in CNNs

* Pooling Layer
— Reduce the dimension of input/output feature map

 Activation Layer
— Normalize input/output feature map values

 Fully-connected Layer



Revisiting Convolutional Layer

for(n=0; n<N; n++) { // Input feature maps (IFMaps)
for(m=0; m<M; m++) { // Weight Filters
for(c=0; c<C; c++) { // IFMap/Weight Channels
for(y=0; y<H; y++) { // Input feature map row
for(x=0; x<H; x++) { // Input feature map column
for(j=0; j<R; j++) { // Weight filter row
for(i=0; i<R; i++) { // Weight filter column
O[n][m][x]ly] += W[m]([c][il[i] * I[n][cIly][x]}}}}}}}

4 4

Accumulation Multiplication

Massive parallelism! ‘ SIMD style parallel execution




Day 1 Agenda

« Convolutional Neural Networks (CNNs)

— CNN accelerator structure overview

+ Bluespec System Verilog (BSV)
— BSV Overview
— Basic Syntax

— Combinational logic



CNN Accelerators

Dadiannao (MICRO 2014) Eyeriss (ISCA 2016)
256 PEs (16 in each tile) 168 PEs

*PE: processing element




Spatial CNN Accelerator Structure

Focus of lab assignments

PE Array

Global Network-on-chip '
Memory 4 (Interconnection

DRAM

(SRAM) Network)

Multi-Bus: Eyeriss
Mesh: Diannao, Dadiannao

Crossbar+Mesh: TrueNorth
Spatial processing over PEs
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+ Bluespec System Verilog (BSV)
— BSV Overview
— Basic Syntax

— Combinational logic



Structure of BSV Code

module mkXYZ (XYZ Inferface):
Reg#(Int#(32)) x <- mkRegU;
Reg#(Int#(32)) y <- mkReg(0);

State

rule step1 ((x>y) && (y 1= 0));
X<=Y,y<=X

endrule

rule step2 (( x <=vy) && (y 1= 0));

y <FY-X,
endrule

Internal
W Hehavior

ethod Action start(Int#(32) a, Int#(32) b) if (y==0);
X<=a;y<=b;
endmethod
method Int#(32) result() if (y==0);

return Xx;
endmethod

xternal
Interface

Slide source: MIT Constructive Computer Architecture



Bluespec System Verilog Example (ALU)
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Bluespec System Verilog Example (ALU)

typedef Bit#(32) Word; User-defined
typedef enum {ADD, MUL} OpCode deriving (Bits, Eq);| types

interface ALU:;

method Action putArguments(OpCode newOp,
Word newArgA, Word newArgB);

method ActionValue#(Word) getResults;

endinterface \

Only defines module interface signature
(name, return type, and arguments)

Module interface
definition




Bluespec System Verilog Example (ALU)
(* synthesize *) — Synthesis Boundary

module mkALU(ALU);
Reg#(Bool) isValidArgs <- mkReg(False);
Reg#(OpCode) op <- mkRegU;
Reg#(Word) argA <- mkRegU; Sub-modules (registers)
Reg#(Word) argB <- mkRegU;
Reg#(Word) res <- mkRegU;

rule doOperation (isValidArgs == True);

if(op == ADD)
res <= argA + argB; _ .
else Rule: define an atomic
action
res <= argA™ argB;
endrule



Bluespec System Verilog Example (ALU)

method Action putArguments(OpCode newOp,

Word newArgA, Word newArgB) if (isValidArgs == False);
isValidArgs <= True; op <= newOp;
argA <= newArgA; argB <= newArgB;

endmethod

method ActionValue#(Word)
getResults if (isValidArgs == True);
isValidArgs <= False;

return res;
endmethod

Actual interface
implementation

endmodule



Day 1 Agenda

+ Bluespec System Verilog (BSV)
— Basic Syntax

— Combinational logic
— Sequential logic



BSV Basic Syntax

 Variable Declaration and Initialization
— Value assignment (‘=)

— Types
— Type deduction (‘let’ statement)
— Type value and real value

 Calculating values (combinational logic)
— Conditional Statements
— Arithmetic operations

— Logical operations
— Bit operators



Variable Assignment (‘=°)

An example involving conditionals

inta=10;

if(b)a=a+1,
else a=a+ 2;

if (c)a=a+ 3

Executes sequentially within a cycle

Slide based on MIT Constructive Computer Architecture



Variable Declaration and Initialization
« Types in BSV

— Primitive types
» Bit#(Number of bits) // All the signals on the circuit
 Bool // Boolean value

— Aggregation types
* Enum
e Struct

 Vector#(Number of elements, Type)

— Module interface



Variable Declaration and Initialization
« Types in BSV

— Example

rule runExample;
Bit#(32) valA = 0;
Bit#(32) valB = 15;
Bool isValid = True;

Declaration of primitive types
Corresponds to “wire” in Verilog

if(isValid == True)
$display(“Value A = %d”, valA);
endrule



Variable Declaration and Initialization
« Types in BSV

— Example - enumeration

typedef enum{Mon, Tue, Wed, Thr, Fri, Sat, Sun}
Days deriving (Bits, Eq);

\_'_l

1) Type “Days” will be converted to “Bits” internally
2) Comparison among“Days” values will be available




Variable Declaration and Initialization

« Types in BSV

— Example - struct

typedef struct{
Days day;
Bit#(32) value;
} DailyBudget deriving (Bit, EQ);

DailyBudget budgeti;

budget1.day = Mon; Access fields using ‘.
budget1.value = 15000;



Variable Declaration and Initialization

« Types in BSV

— Example — vector1

Vector#(4, Bit#(32)) fourValues;

fourValues[0] = 1;
fourValues[1] = 2;
- Access each element using []
fourValues[2] = 3;
fourValues[3] = 4;



Variable Declaration and Initialization
« Types in BSV

— Example — vector2

Vector#(2, Vector#(4, Bit#(32))) twoFourValues;

fourValues[0][0] = 1;
fourValues[0][1] = 2;
- Access multiple ’[ ]’ s to access
fourValues[0][2] = 3; elements
fourValues[0][3] = 4;



Variable Declaration and Initialization

* Automatic Type Deduction using “let”

— "let” statement enables users to declare a variable
without providing an exact type

— Compiler deduces the type using other information
(e.g., assigned value)

— Example

let isValid = True; // Assigning Bool value; isValid is Bool
let today = Fri; // Assigning Days value; today is Days




Variable Declaration and Initialization

* Type value and real value

— Integer literal assigned to a type is a type value
(e.g., typedef 32 WordLength; )

— All the values based on Bit#(n), which actually exists
on the circuit as signals, are real values.

— We cannot directly assign a type value to a real value
(e.g., Bit#(32) len = WordLength; //Error!)




Variable Declaration and Initialization

* Type value and real value

— Type values are usually used as module/interface
parameters

(e.g., Reg#(Bit#(WaordLength)) wordReg <- mkRegU;)

— We cannot directly assign a type value to a real value
(e.g., Bit#(32) len = WordLength; //Error!)

— We can convert (1) type values to Integer values and
(2) Integer values to real values

(e.g., Bit#(32) len = frominteger(valueOf(WordLength));

Integer type will be explained with “static elaboration”



Variable Declaration and Initialization

* Type value and real value

ValueOF() frominteger()

Type Value Integer Bits
Module parameters Conceptual numbers in Real Values in a circuit
- Cannot be modified a circuit (not a signal) - Represents values

after defined - Example: The index that exist either on a
- Example: data bit- of a register array, wire or memory

width, number of iteration variable in element(register/FIF

PEs, etc. a for-loop 0O)

- To define another
type value using
existing type values,
use special
statements (e.g.,
TAdd#(T1,T2))



BSV Basic Syntax

 Calculating values (combinational logic)
— Conditional Statements
— Arithmetic operations

— Logical operations
— Bit operators



IF-statement

« [f/elseif/ else/ endif
— EX)
Bit#(16) valA = 12;
if (valA == 0) begin
$display(“valA is zero”);

end

else if( valA = 1) begin
$display(“valA is neither zero nor one”);

end

else begin
$display(“valAis %d”, valA);

end



Arithmetic Operators

« Addition (+), subtraction (-), multiplication (*),
and divisions (/)
— Ex)
Bit#(16) valA = 12; Bit#(16) valB = 2500;
Bit#(16) valC = 50000;

IetvaDzvaA+VaIB; SR
let valE = valC —valB:
let VanvaB*Valc;

let valG =valB / valA;



Logical Operators

« Comparators (==, >, <, >=, <=) and Operators
(&&, I, 1)
— Ex)
Bit#(16) valA = 12; Bit#(16) valB = 2500;
Bit#(16) valC = 50000;

letvalD =valA<valB;
let valE = valC ==valB; "'~ -
Iet va F = |Va|D, Ie=_u_ _

let valG = valD && valE; "~




Bit Operators

 Selection ([]), concatenation ({ }), truncation
(trucate, truncateLSB), and extension

(zeroExtend, signExtend)

— EX)

Bit#(4) valA = 4b1001; Bit#(4) valB = 4’b1100;
letvalC ={valA,valB}; =" "~~~ "7~

Bit#(4) valD = truncate(valC); " "7~
“Let” statement doesn’t work with truncate/extension. Why?

DitHQ\ \inlE — 2arnEvianAdA/al A)-

Now we are ready to code combinational logic ©



Day 1 Agenda

+ Bluespec System Verilog (BSV)

— Combinational logic



[Lab] Combinational Logic Implementation

* Arbiter

— Arbiter is a hardware module that manages
concurrent requests to one hardware resource

(e.g., DRAM write requests to the same DRAM bank

from multiple cores) Winner

Requesters



[Lab] Combinational Logic Implementation

* Arbiter

— Requirements on Arbiter
* Low area and power

« Scalability in area/power and performance
(latency, max. clock cycle, etc.)

* Fairness

—| Arpiter designs

* Priority arbiter
 Round-robin arbiter
* Matrix arbiter



[Lab] Combinational Logic Implementation

* Priority Arbiter

— Arbitration policy
» Determine priority of each requester in design time
(e.g., priority: core 1 < core 2 < core 3<core 4
when the arbiter receives requests from
core 1,3, and 4, the arbiter select core 1
as the winner)

* Implement the priority using a combinational logic




[Lab] Combinational Logic Implementation

* Priority Arbiter
— Spec

* Implement a 4:1 priority arbiter logic using the
following priority

— Request 0 < Request 1 < Request 2 < Request 3
* A< B: A has higher priority than B

« Module interface (1/0) is provided in the skeleton
code

« Hint: you can use $display(“ your print-out
message”) for debugging



