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Goals of This Lecture
• Understanding convolutional neural network 

(CNN) computation for inference

• Learn how to implement hardware using 
Bluespec System Verilog (BSV)

• Implement a simplified CNN accelerator using 
BSV

• Understand research opportunity around deep 
learning accelerators

�



Lecture Schedule

• Day 1
– Convolutional Neural Networks (CNNs)
– Bluespec System Verilog (BSV) Basic Syntax and 

Combinational Logic Implementation

• Day 2
– BSV sequential logic and execution model
– Traffic in CNN Accelerators

• Day 3
– Processing Element
– Hierarchical Module Design with BSV

�



Day 1 Agenda
• Convolutional Neural Networks (CNNs)
– Applications
– CNN structure
– Layer structure and computation
– CNN accelerator structure overview

• Bluespec System Verilog (BSV)
– BSV Overview
– Basic Syntax
– Combinational logic

�



Deep Learning Algorithms
• Convolutional Neural Network (CNN)
– Convolution-based deep neural network
– Currently, the most popular DNN

• Recurrent Neural Network (RNN)
– Considers temporal context
– Emerging DNN

• Spiking Neural Network (SNN)
– Mimic brain activity
– Alternative DNN

�



CNN Applications

�

• Image/Video recognition



CNN Applications

�

• Natural Language Processing (NLP)

Image source: Standford CS224n (http://web.stanford.edu/class/cs224n/)

* Recurrent Neural Network (RNN) is better for accuracy



CNN Applications

�

• Drug Discovery

Image source: I. Wallach et al., AtomNet: A Deep Convolutional Neural network for Bioactivity Prediction in 
Structure-based Drug Discovery, aiXiv:1510.02855, 2015



Training vs. Inference

�

• Training: Tuning parameters using training data
� Stochastic gradient descent is the most popular algorithm
� Training in data centers and distributing trained data is a 

common model
� Because training algorithm changes rapidly, GPU cluster is 

the most popular hardware (Low demand for application-
specific accelerators)

• Inference: Determining class of a new input data
� Using a trained model, determine class of a new input data
� Inference usually occurs close to clients
� Low-latency and power-efficiency is required (High demand 

for application specific accelerators)



Day 1 Agenda
• Convolutional Neural Networks (CNNs)
– Applications
– CNN structure
– Layer structure and computation
– CNN accelerator structure overview

• Bluespec System Verilog
– BSV Overview
– Basic Syntax
– Combinational logic
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CNN Structure Overview

��
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Realistic CNN Structure (Alexnet) 

��

Image source: Alex Krizhevsky et al., ImageNet Classification with Deep Convolutional Neural Networks, NIPS, 2012

Conv. Layer Pool. Layer Pool. Layer FC Layers...



Realistic CNN Structure (VGGNet-16) 

��

Image source: Heuritech blog (https://blog.heuritech.com/2016/02/29/a-brief-report-of-the-heuritech-
deep-learning-meetup-5/)

ResNet, GoogleNet, etc.



Day 1 Agenda
• Convolutional Neural Networks (CNNs)
– Applications
– CNN structure
– Layer structure and computation
– CNN accelerator structure overview

• Bluespec System Verilog (BSV)
– BSV Overview
– Basic Syntax
– Combinational logic
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Layers in CNN
• Convolutional Layer
– Feature extraction
– The most computation-dominant layer in CNNs

• Pooling Layer
– Reduce the dimension of input/output feature map

• Activation Layer
– Normalize input/output feature map values

• Fully-connected Layer

��



Convolutional Layer: Overview

��

• Sliding window operation over input featuremaps
Image source: Y. Chen et al., Eyeriss: A Spatial Architecture for Energy-Efficient Dataflow for Convolutional 
Neural Networks, ISCA 2016



Convolutional Layer: Computation

��

for(n=0; n<N; n++) { // Input feature maps (IFMaps)
for(m=0; m<M; m++) { // Weight Filters
for(c=0; c<C; c++) { // IFMap/Weight Channels
for(y=0; y<H; y++) {  // Input feature map row
for(x=0; x<H; x++) {  // Input feature map column
for(j=0; j<R; j++) {  // Weight filter row
for(i=0; i<R; i++) {  // Weight filter column

O[n][m][x][y] += W[m][c][i][j] * I[n][c][y+j][x+i]}}}}}}}

MultiplicationAccumulation



Convolutional Layer: Sliding Window Operation

��

Multi-dimensional 
2D Filters

Input featuremaps
(Input image)
Data to processTrained Data
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nn
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Convolutional Layer: Sliding Window Operation

��

1) Multiply each element (input * filter)
2) Accumulate all the (input * filter) values
3) Move filter to a dimension

Filter weight

Input featuere map
“Partial Sum”

“Partial Sum (Channel)”



��

4) Repeat the same process (1-3) until the 
filter reaches the edge

Filter weight

Input featuere map

Convolutional Layer: Sliding Window Operation



��

5) Move on to the next row and repeat the 
same process (1-4)

Filter weight

Input featuere map

Convolutional Layer: Sliding Window Operation



��

6) Repeat the same process (1-5) until the 
filter reaches the final pixel of input feature 
map

Filter weight

Input featuere map

Convolutional Layer: Sliding Window Operation



��

Filter weight

Input featuere map

7) Repeat the same process (1-6) for all the 
other channels

Convolutional Layer: Sliding Window Operation



��

Partial Sums 
(B-Channel)

8) Accumulate channel partial sums element-
by-element to get output feature map

Partial Sums 
(G-Channel)

Partial Sums 
(R-Channel)

Output 
Feature map

Convolutional Layer: Sliding Window Operation



Convolutional Layer: Example

��
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Convolutional Layer: Example

��
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Channel partial sum[0][0] = 
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Convolutional Layer: Example

��
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Convolutional Layer: Example

��

-4 5 6

7 3 2

0 -1 9

2

5

2

0 2 0 6

-9 3 7

6 2 8

3 -4 0

1

1

0

5 3 -2 -6

31 7 44

65 35 40

46 29 32

33

46

30

24 49 8 64

Output 
Feature map

Decreased dimension?
(6x6 -> 4x4)

44 -1 31

52 30 30

43 34 23

30

40

28

19 44 10 64



Convolutional Layer: Zero-padding
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Convolutional Layer: Computation

��

for(n=0; n<N; n++) { // Input feature maps (IFMaps)
for(m=0; m<M; m++) { // Weight Filters
for(c=0; c<C; c++) { // IFMap/Weight Channels
for(y=0; y<H; y++) {  // Input feature map row
for(x=0; x<H; x++) {  // Input feature map column
for(j=0; j<R; j++) {  // Weight filter row
for(i=0; i<R; i++) {  // Weight filter column

O[n][m][x][y] += W[m][c][i][j] * I[n][c][y][x]}}}}}}}

MultiplicationAccumulation
Massive independent multiplications
Massive accumulations Massive parallelism!



Pooling Layer

��
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• Selecting Pixels using Pooling Window
Ex) Max Pooling



Pooling Layer

��
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Feature map

Pooling Window
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• Selecting Pixels using Pooling Window
Ex) Max Pooling

46



Pooling Layer

��
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• Selecting Pixels using Pooling Window
Ex) Max Pooling
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Pooling Layer

��

31 7 44

65 35 40

46 29 32

33

46

30

24 49 8 64

Feature map

Pooling Window

65

• Selecting Pixels using Pooling Window
Ex) Max Pooling

46

46 64

Reduces feature map dimension!



Activation Layer

��

Sigmoid function Rectified Linear Unit (ReLU) function

• Add non-linearity to neural networks
• Normalizes feature map values

• Applying a non-linear function 



Fully-connected Layer

��

• Determining Output Using Gathered Features

has Eyes?

has oval 
shape?

has hair on 
the top?

Features

has ears?

...

Feature
Extraction

(Conv. Layers)

Input 
Image



Fully-connected Layer

��

has Eyes?

has oval 
shape?

has hair on 
the top?

Features

has ears?

...

is human 
face? No!

Final OutputFC Layer

• Determining Output Using Gathered Features



Fully-connected Layer: Computation

��

Filter 0

Filter 1

• Convolutions with Multiple Filters

Input feature map

Output feature map 0

Output feature map 1



Fully-connected Layer: Computation

��

• Utilizing Each Feature to Determine Output

Output feature map 0

Output feature map 1

Bias 0

Bias 1

+

FC filter 0

FC filter 1

Final Value



Layers in CNN
• Convolutional Layer
– Feature extraction
– The most computation-dominant layer in CNNs

• Pooling Layer
– Reduce the dimension of input/output feature map

• Activation Layer
– Normalize input/output feature map values

• Fully-connected Layer

��



Revisiting Convolutional Layer

��

for(n=0; n<N; n++) { // Input feature maps (IFMaps)
for(m=0; m<M; m++) { // Weight Filters
for(c=0; c<C; c++) { // IFMap/Weight Channels
for(y=0; y<H; y++) {  // Input feature map row
for(x=0; x<H; x++) {  // Input feature map column
for(j=0; j<R; j++) {  // Weight filter row
for(i=0; i<R; i++) {  // Weight filter column

O[n][m][x][y] += W[m][c][i][j] * I[n][c][y][x]}}}}}}}

MultiplicationAccumulation

Massive parallelism! SIMD style parallel execution 



Day 1 Agenda
• Convolutional Neural Networks (CNNs)
– Applications
– CNN structure
– Layer structure and computation
– CNN accelerator structure overview

• Bluespec System Verilog (BSV)
– BSV Overview
– Basic Syntax
– Combinational logic
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CNN Accelerators

��

168 PEs256 PEs (16 in each tile)
Dadiannao (MICRO 2014) Eyeriss (ISCA 2016)

*PE: processing element



Spatial CNN Accelerator Structure

��

Global 
Memory
(SRAM)

Network-on-chip
(Interconnection 

Network)

PE PE PE...

PE PE PE...

PE PE PE

...

Multi-Bus: Eyeriss
Mesh: Diannao, Dadiannao
Crossbar+Mesh: TrueNorth

Spatial processing over PEs

D
R

A
M

PE Array

Focus of lab assignments
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• Convolutional Neural Networks (CNNs)
– Applications
– CNN structure
– Layer structure and computation
– CNN accelerator structure overview

• Bluespec System Verilog (BSV)
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– Combinational logic
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Structure of BSV Code

	���
����4�
����
�����64��6��
������6
4��4���6
�6�4
 ��

module mkXYZ (XYZ_Inferface);
Reg#(Int#(32)) x <- mkRegU;
Reg#(Int#(32)) y <- mkReg(0);

rule step1 ((x > y) && (y != 0));
x <= y; y <= x;

endrule
rule step2 (( x <= y) && (y != 0));
y <= y-x;

endrule

method Action start(Int#(32) a, Int#(32) b) if (y==0);
x <= a; y <= b;

endmethod
method Int#(32) result() if (y==0);
return x;

endmethod

endmodule

State

Internal
behavior

External
interface

x y

step1 step2



Bluespec System Verilog Example (ALU)

��
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Bluespec System Verilog Example (ALU)
typedef Bit#(32) Word;
typedef enum {ADD, MUL} OpCode deriving (Bits, Eq);

interface ALU;
method Action putArguments(OpCode newOp, 

Word newArgA, Word newArgB);
method ActionValue#(Word) getResults;

endinterface

...

��

Module interface 
definition

User-defined
types

Only defines module interface signature 
(name, return type, and arguments)



Bluespec System Verilog Example (ALU)
(* synthesize *)
module mkALU(ALU);
Reg#(Bool) isValidArgs <- mkReg(False);
Reg#(OpCode) op <- mkRegU;
Reg#(Word) argA <- mkRegU; 
Reg#(Word) argB <- mkRegU;
Reg#(Word) res <- mkRegU;

rule doOperation (isValidArgs == True);
if(op == ADD)
res <= argA + argB;

else
res <= argA * argB;

endrule
...

��

Sub-modules (registers)

Rule: define an atomic 
action

Synthesis Boundary



Bluespec System Verilog Example (ALU)
method Action putArguments(OpCode newOp, 
Word newArgA, Word newArgB) if (isValidArgs == False);
isValidArgs <= True; op <= newOp; 
argA <= newArgA; argB <= newArgB;

endmethod

method ActionValue#(Word) 
getResults if (isValidArgs == True);
isValidArgs <= False;
return res;

endmethod

endmodule

��

Actual interface 
implementation



Day 1 Agenda
• Convolutional Neural Networks (CNNs)
– Applications
– CNN structure
– Layer structure and computation
– CNN accelerator structure overview

• Bluespec System Verilog (BSV)
– BSV Overview
– Basic Syntax
– Combinational logic
– Sequential logic
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BSV Basic Syntax
• Variable Declaration and Initialization
– Value assignment (‘=’)
– Types
– Type deduction (‘let’ statement)
– Type value and real value

• Calculating values (combinational logic)
– Conditional Statements
– Arithmetic operations
– Logical operations
– Bit operators

��



Variable Assignment (‘=‘)

���
���
��
�3����	��3���5��������3�����5��5��������5� ��

int a = 10;

if (b) a = a + 1;
else a = a + 2;

if (c) a = a + 3;

b

c

+1 +2

+3

if

if

a3

a1

a2

a4

a5

An example involving conditionals

Executes sequentially within a cycle



Variable Declaration and Initialization

��

• Types in BSV
– Primitive types
• Bit#(Number of bits) // All the signals on the circuit 
• Bool // Boolean value

– Aggregation types
• Enum
• Struct
• Vector#(Number of elements, Type)

– Module interface



Variable Declaration and Initialization

��

• Types in BSV
– Example

rule runExample;
Bit#(32) valA = 0;
Bit#(32) valB = 15;
Bool isValid = True;

if(isValid == True) 
$display(“Value A = %d”, valA);

endrule

Declaration of primitive types
Corresponds to “wire” in Verilog



Variable Declaration and Initialization

��

• Types in BSV
– Example - enumeration

typedef enum{Mon, Tue, Wed, Thr, Fri, Sat, Sun}
Days deriving (Bits, Eq);

1) Type “Days” will be converted to “Bits” internally 
2) Comparison among“Days” values will be available



Variable Declaration and Initialization

��

• Types in BSV
– Example - struct

typedef struct{
Days day;
Bit#(32) value;

} DailyBudget deriving (Bit, Eq);

DailyBudget budget1;
budget1.day = Mon;
budget1.value = 15000;

Access fields using ‘.’



Variable Declaration and Initialization

��

• Types in BSV
– Example – vector1

Vector#(4, Bit#(32)) fourValues;

fourValues[0] = 1;
fourValues[1] = 2;
fourValues[2] = 3;
fourValues[3] = 4;

Access each element using []



Variable Declaration and Initialization

��

• Types in BSV
– Example – vector2

Vector#(2, Vector#(4, Bit#(32))) twoFourValues;

fourValues[0][0] = 1;
fourValues[0][1] = 2;
fourValues[0][2] = 3;
fourValues[0][3] = 4;

Access multiple ’[ ]’ s to access 
elements



Variable Declaration and Initialization

��

• Automatic Type Deduction using “let”
– ”let” statement enables users to declare a variable 

without providing an exact type

– Compiler deduces the type using other information 
(e.g., assigned value)

– Example
let isValid = True; // Assigning Bool value; isValid is Bool
let today = Fri;  // Assigning Days value; today is Days



Variable Declaration and Initialization

��

• Type value and real value
– Integer literal assigned to a type is a type value

(e.g., typedef 32 WordLength; )

– All the values based on Bit#(n), which actually exists 
on the circuit as signals, are real values.

– We cannot directly assign a type value to a real value
(e.g., Bit#(32) len = WordLength; //Error! )



Variable Declaration and Initialization

��

• Type value and real value
– Type values are usually used as module/interface 

parameters
(e.g., Reg#(Bit#(WordLength)) wordReg <- mkRegU;)

– We cannot directly assign a type value to a real value
(e.g., Bit#(32) len = WordLength; //Error! )

– We can convert (1) type values to Integer values and 
(2) Integer values to real values

(e.g., Bit#(32) len = fromInteger(valueOf(WordLength));
Integer type will be explained with “static elaboration”



Variable Declaration and Initialization

��

• Type value and real value

Type Value Integer Bits
ValueOF() fromInteger()

Module parameters
- Cannot be modified 

after defined
- Example: data bit-

width, number of 
PEs, etc.

- To define another 
type value using 
existing type values, 
use special 
statements (e.g., 
TAdd#(T1, T2) )

Conceptual numbers in 
a circuit (not a signal)
- Example: The index 

of a register array, 
iteration variable in 
a for-loop

Real Values in a circuit
- Represents values 

that exist either on a 
wire or memory 
element(register/FIF
O)



BSV Basic Syntax
• Variable Declaration and Initialization
– Value assignment (‘=’)
– Types
– Type deduction (‘let’ statement)
– Type value and real value

• Calculating values (combinational logic)
– Conditional Statements
– Arithmetic operations
– Logical operations
– Bit operators

��



IF-statement

��

• If/elseif/ else/ endif
– Ex)
Bit#(16) valA = 12;
if (valA == 0) begin
$display(“valA is zero”);

end
else if(valA != 0 && valA != 1) begin
$display(“valA is neither zero nor one”);

end
else begin
$display(“valA is %d”, valA);

end



Arithmetic Operators

��

• Addition (+), subtraction (-), multiplication (*), 
and divisions (/)
– Ex) 
Bit#(16) valA = 12; Bit#(16) valB = 2500; 
Bit#(16) valC = 50000;

let valD = valA + valB; //2512
let valE = valC – valB; //47500
let valF = valB * valC; //Overflow! (125000000 > 216)

//valF = (125000000 mod 216)
let valG = valB / valA; // 208 (remove the fraction part)



Logical Operators

��

• Comparators (==, >, <, >=, <=) and Operators 
(&&, ||, !)
– Ex) 
Bit#(16) valA = 12; Bit#(16) valB = 2500; 
Bit#(16) valC = 50000;

let valD = valA < valB; //True
let valE = valC == valB; //False
let valF = !valD; //False
let valG = valD &&  !valE; //True



Bit Operators

��

• Selection ([]), concatenation ({ }), truncation 
(trucate, truncateLSB), and extension 
(zeroExtend, signExtend)
– Ex) 
Bit#(4) valA = 4’b1001; Bit#(4) valB = 4’b1100;
let valC = {valA, valB}; //8’b10011100

Bit#(4) valD = truncate(valC); //4’b1100
Bit#(4) valE = truncateLSB(valC); //4’b1001

Bit#(8) valF = zeroExtend(valA); //4’b00001001
Bit#(8) valG = signExtend(valA); //4’b11111001

“Let” statement doesn’t work with truncate/extension. Why?

Now we are ready to code combinational logic J
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[Lab] Combinational Logic Implementation

��

• Arbiter
– Arbiter is a hardware module that manages 

concurrent requests to one hardware resource
(e.g., DRAM write requests to the same DRAM bank 

from multiple cores)

Arbiter

Requesters

Winner



[Lab] Combinational Logic Implementation

��

• Arbiter
– Requirements on Arbiter
• Low area and power
• Scalability in area/power and performance 

(latency, max. clock cycle, etc.)
• Fairness 

– Arbiter designs
• Priority arbiter
• Round-robin arbiter
• Matrix arbiter
...



[Lab] Combinational Logic Implementation

��

• Priority Arbiter
– Arbitration policy
• Determine priority of each requester in design time

(e.g., priority: core 1 < core 2 < core 3< core 4
when the arbiter receives requests from 
core 1,3, and 4, the arbiter select core 1 
as the winner)

• Implement the priority using a combinational logic 



[Lab] Combinational Logic Implementation

��

• Priority Arbiter
– Spec
• Implement a 4:1 priority arbiter logic using the 

following priority 
–Request 0 < Request 1 < Request 2 < Request 3
* A < B: A has higher priority than B

• Module interface (I/O) is provided in the skeleton 
code

• Hint: you can use $display(“ your print-out 
message”) for debugging


