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A Communication-centric 
Approach for Designing 
Flexible DNN Accelerators 

High computational demands of DNNs coupled with their 
pervasiveness across cloud and IoT platforms have led to the 
emergence of DNN accelerators employing hundreds of 
processing elements (PE). Most DNN accelerators are optimized 
for regular mapping of the problems, or dataflows, emanating from 

dense matrix multiplications in convolutional layers. However, continuous innovations in DNN 
including myriad layer types/shapes, cross-layer fusion, and sparsity have led to irregular dataflows 
within accelerators, which introduces severe PE underutilization because of rigid and tightly-coupled 
connections among PEs and buffers. To address this challenge, this article proposes a 
communication-centric approach called MAERI for designing DNN accelerators. MAERI’s key novelty 
is a light-weight configurable interconnect connecting all compute and memory elements that enables 
efficient mapping of both regular and irregular dataflows providing near 100% PE utilization. 
Keywords: Deep Neural Networks, Accelerators, Dataflow, Network-on-chip 

INTRODUCTION 
The microarchitecture of DNN inference engines is currently an area of active research in the computer 
architecture community. Graphics processing units (GPUs) are extremely efficient for training due to 
the mass parallelism they offer, multi-core central processing units (CPUs) continue to provide platforms 
for algorithmic exploration, and FPGAs provide power-efficient and configurable platforms for algo-
rithmic exploration and acceleration; but for mass deployment across various domains (smartphones, 
cars, etc.), specialized DNN accelerators are necessary to maximize performance per watt. This observa-
tion has led to a flurry of ASIC proposals for DNN inference accelerators over the recent years [1, 2, 4-8]. 
DNNs have millions of parameters, which needs to be mapped over limited compute and memory re-
sources in the DNN accelerator. We define each unique mapping as a “dataflow”. The dataflow deter-
mines the degree of data reuse (which is critical to throughput and energy efficiency of the accelerator), 
and determines the communication pattern between the compute and memory elements. We identify 
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three sources that affect dataflow – DNN topology, DNN dataflow graph (DFG) partitioning and map-
ping, and DFG transformations. On the topology front, DNNs today use a mix of convolution, recurrent, 
pooling, and fully-connected layers; new layer types such inception [3], dilated convolution [13], and 
transposed convolution [14] are also being actively explored. DNN dataflow graph (DFG) can be par-
titioned in myriad ways to map over the compute array – layer by layer [1], across layers [4],  kernels, 
channels, or outputs, as each approach has different trade-offs for data reuse and energy-efficiency. The 
DFG can also be transformed by removing some of the edges whose weights are zero or close to zero 
[5-6] to reduce power consumption inside DNN accelerators. Naturally, each of these three approaches 
can lead to unique and often irregular (especially with fused layer [4] or sparsity optimizations [5-6]) 
dataflows. Dataflows directly impact the performance and energy-efficiency of accelerators, as they 
have a direct impact on the amount of data movement, data reuse, and memory accesses, as prior works 
have shown [7, 15]. 
Unfortunately, state-of-the-art DNN accelerators today, such as Google TPU [8], Eyeriss [1], and their 
variants, employ dense 2D arrays – which are optimized for a very regular dataflow, namely dense 
matrix multiplications present in convolution operations. Irregular dataflows can lead to heavy underuti-
lization (e.g., some long short-term memories (LSTMs) only utilize 4% of the MAC units on the TPU 
[8]). We claim that the reason DNN accelerators today cannot map arbitrary dataflows is because the 
interconnection fabric connecting the MAC units are either limited in terms of their connectivity (e.g., 
mesh), or their bandwidth (e.g., bus). Our community’s approach to addressing this issue has been quite 
reactive – every new DNN topology/DFG mapping/sparsity optimization has led to a new DNN ASIC 
proposal [4,5,6]. This makes the hardening of DNN accelerators into an IP or a discrete chip that is 
future-proof for the rapidly evolving DNN landscape impractical.  
How do we design a single accelerator substrate that can handle the growing number of dataflows re-
sulting from multiple kinds of layers, dense and sparse connections, and various partitioning ap-
proaches? We propose to make the interconnects within the accelerator reconfigurable. Our insight is 
the following: The DNN DFG is fundamentally a multi-dimensional multiply-accumulate (MAC) cal-
culation. Each dataflow is essentially some kind of transformation of this multi-dimensional loop [7]. 
Thus, at the heart of each dataflow that exists today or might be proposed in future, is still a collection of MAC 
operations spread across the processing engines.  We propose to design DNN accelerators as a collection 
of multiply and adder engines, each augmented with tiny configurable switches (called switchlets) that 
can be configured to support different kinds of dataflows. Our design is called MAERI (Multiply-Ac-
cumulate Engine with Reconfigurable Interconnect). MAERI is a communication (rather than a com-
pute)-centric approach for designing DNN accelerators. Figure 1 shows an overview. It enables on-
demand allocation of multipliers and adders depending on the dataflow by configuring the switches, 
thereby providing high compute utilization. It also provides high-bandwidth non-blocking interconnect 
topologies tailored to the communication patterns within DNN accelerators for maximizing data reuse 
and minimizing stalls.  
We demonstrate MAERI with multiple case studies. On average, MAERI reduces the run time by 42% 
and 57% over Eyeriss [1], and 23% and 148% over Systolic Arrays [8] for state-of-the-art CNNs and 
LSTMs respectively. This translates to energy reductions of up to 36%. 
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Figure 1: (a) Compute unit pool abstraction provided by MAERI (b) MAERI architecture to support 
the abstraction, and (c) Switchlet architectures. (dNetworks in MAERI for data distribution (fat tree 
with local forwarding at leaves) to the multiplier switchlets (a-c) and collection (fat-tree with local 
forwarding at upper levels) to the buffer (d-f). Red links indicate insufficient bandwidth or link 
conflicts. (g) and (h) show examples of mapping irregular dataflows over MAERI. 

BACKGROUND AND MOTIVATION 

Deep Neural Networks (DNNs) 
Neural networks are a rich class of algorithms that can be trained to model the behavior of complex 
mathematical functions. Neural networks model human brain with a large collection of “neurons" con-
nected with “synapses." Each neuron is connected with many other neurons and its output enhances or 
inhibits the actions of the connected neurons. The connection is based on weights associated with syn-
apse. Therefore, computations for a neuron can be translated as weighted sum operations. Deep neural 
networks (DNNs) have multiple internal (called hidden) neuron layers before the final output layer that 
performs the classification. DNNs also involve pooling and activation operations. Pooling is a sampling 
operation that reduces output feature map dimensions by the pooling window size. Activation is a non-
linear functions such as rectifier linear units (ReLU). Pooling and activation operations follow after some 
of hidden layers in a DNN. Therefore, the weighted sum consists of the majority of computations in a 
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DNN. 

Spatial DNN Accelerators 
The most dominant computation in DNNs, a weighted-sum, contains massive parallelization oppor-
tunity for element-wise multiplications and accumulations. To exploits this parallelism, spatial architec-
tures with hundreds of processing elements (PE) fed by a global buffer have been the most popular 
hardware substrate for accelerating DNNs [1-2, 4-9]. The PEs consist of fixed- or floating-point multi-
ply-accumulate-unit (MAC) and local scratch pad memory usually implemented using SRAMs. Global 
buffer is also a SRAM-based scratchpad memory, but it has larger size than local scratch pad memories 
in PEs. Unlike GPUs, spatial architectures support direct PE to PE communication, enabling data reuse 
both within and across PEs, reducing the number of memory accesses, and thereby energy consumption. 

Network-on-Chip (NoC) 
To support data reuse, spatial DNN accelerators use an on-chip communication substrate between the 
PEs and the global buffer, called a network-on-chip (NoC). Buses, meshes and crossbars are the most 
popular NoC topologies. Buses are cheap to implement but provide extremely low bandwidth (as they 
support only one transmission at a time) while crossbars provide extremely high bandwidth but scale 
horribly in terms of area and power; meshes provide a reasonable trade-off between these extremes and 
are used extensively in modern multi-core CPUs. Mesh NoCs provide all-to-all connectivity that is re-
quired for cache coherence traffic. However, they provide a skewed bandwidth distribution across the 
NoC links for DNN traffic, as highlighted by prior work [9], leading to PE stalls. Moreover, their area 
and power is proportional or higher than that of the PEs themselves, making them an inefficient design 
choice. To mitigate these issues, most DNN accelerators today tightly couple a fixed number of PEs 
together using buses [1] or trees [2, 3] or neighbor-to-neighbor connections [8], and scale up by using 
hierarchical NoCs [6]. Unfortunately, this approach naturally leads to under-utilization of PEs for irreg-
ular dataflows due to the inflexibility of mapping across arbitrary number of PEs, and leads to stalls if 
the connections leading to the PEs do not support the required bandwidth for that dataflow. This work 
addresses these challenges by designing an extremely light-weight communication fabric with the right 
amount of flexibility to support arbitrary DNN dataflows, without requiring a full-fledged NoC. 

APPROACH AND DESIGN 

Communication Classes in DNN Accelerators 
We classify communication flows within DNN accelerators [9] into the following traffic classes: 

• Distribution: Distribution is communication from global buffer to PEs, which delivers 
weights and input activations to be computed in each PE. Distribution requires multiple 
simultaneous unicasts or multicasts (depending on the accelerator implementation) from 
the global buffer to the PEs. 

• Local forwarding: Local forwarding is direct communication (forwarding) between PEs 
for data reuse in convolutional layers, reducing the number of reads from the global buffer. 
Local forwarding requires multiple simultaneous unicasts between PEs. 

• Reduction: Reduction is direct communication between PEs for accumulating partial 
sums. Each reduction requires multiple simultaneous unicasts between PEs. 

• Collection: Collection is communication from PEs to the global buffer to deliver final out-
put activations reduced within the PE array. Collection requires multiple unicasts from one 
or more PEs (depending on how many unique outputs the array generates based on the 
mapping strategy) to the global buffer.  
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We leverage these traffic classes to construct a communication-driven spatial DNN accelerator archi-
tecture. 

Designing a Fully-flexible DNN Accelerator 
Supporting full PE utilization with myriad irregular DNN dataflows essentially requires DNN acceler-
ators to support customizable grouping of compute resources at runtime. To enable the illusion of mul-
tiplier/adder pools for fully flexible DNN accelerator described in Figure 1 (a), we separate out the 
multipliers and adders from PEs to enable fine-grained mapping and embed them into tiny switches to 
enable customizable groupings. We name the switches as multiplier switchlet and adder switchlet, based 
on their functional units, and the entire architecture as MAERI (Multiply-Accumulate Engine with Re-
configurable Interconnects), as shown in Figure 1 (b). 
MAERI supports multiple dataflows by reconfiguring each switchlet to directly deliver its computation 
results to the desired destination switchlet for correct functionality. This approach programs data move-
ment, not computation, unlike traditional computer systems, and allows users to fully explore optimiza-
tion opportunities that involve irregular dataflow. 
A key requirement for enabling this functionality is the right set of physical connections between the 
switchlets. Instead of using a full-fledged all-to-all NoC and pay its area, power, and latency overheads, 
we design a novel interconnection topology tuned for the traffic classes described in the previous section. 
MAERI uses two separate networks – a distribution network and a collection network, as shown in 
Figure 1.  MAERI’s interconnection is fat-tree-based hierarchical networks with additional forwarding 
links for non-blocking reductions, which we discuss next. 

Distribution and Collection Networks with Local Forwarding 
Based on the observation of traffic in DNN accelerators [9], we specialize NoC structures for 
each traffic pattern: distribution with local forwarding and collection with reduction. 

Distribution Network 
The distribution network connects the global buffer to all the multiplier switchlets, and is responsible for 
delivering inputs and filter weights. We list three features of our distribution network following the order 
described in Figure 1(d)-(f). 
Binary Tree. To support multicasting, we employ a binary tree-based distribution network, as shown 
in Figure1(d). Although a bus also provides multicasting functionality (and has been used in prior ac-
celerators [1]), tree-based distribution is more energy efficient because a tree activates only the links 
going towards the destinations while a bus broadcasts data all the time, even for unicasts.  
Fat Links. To support multiple multicasts simultaneously, we provide higher bandwidth at the upper 
levels of the tree. When the bandwidth at each level is double the one at the lower level, the distribution 
network can support N/2 (where N is the number of leaves), which constructs a fat tree. This case is 
extremely beneficial to fully-connected layers because it requires unique data to be delivered to each PE 
at the same time, but comes at the cost of large wire overhead and more switches. Such a high bandwidth 
is, however, not required for convolutional layers where data reuse requires lower distribution band-
width. MAERI allows designers to choose either the same bandwidth or twice at higher levels of tree at 
design-time, based on the area and power budget of the accelerator. This is shown in Figure 1(e). 
Local Forwarding Links. The leaves (multiplier switchlets) in the distribution network are connected 
to each other directly, for local forwarding of weights between the multipliers, as shown in Figure 1(f). 
This reduces the number of reads from the global buffer, and reduces the bandwidth requirement from 
the distribution tree. Since we control the computation mapping across the multipliers, we only need 
unidirectional forwarding links. 
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Collection Network 
The collection network performs multiple simultaneous reductions and delivers multiple output activa-
tions to the global buffer via activation units. We call our topology as an augmented reduction tree 
(ART). We list three features of ART following the order described in Figure 1(g)-(i). 
Binary Tree. Binary-trees are well-suited for performing reductions and have been used in prior DNN 
implementations to implement adder trees within PE clusters, and form our strawman design. However, 
they have a key inefficiency: the fixed topology of a tree is inherently inefficient whenever the number 
of partial sums to be accumulated is smaller than the width of the adder tree. Figure 1(g) illustrates this. 
Suppose there are 16 multipliers, all connected via a 16-node binary reduction tree. Each node in the 
reduction tree is an adder. This tree is perfect for performing a reduction for a 16-input neuron. How-
ever, suppose we map three neurons over these multipliers, each generating five partial sums, as Figure 
1 (g) shows. Each neuron requires four additions to generate an output, so the total additions required is 
12. The reduction tree contains 16 adders, which should be sufficient to perform the additions for all 
neurons in parallel. However, the four links in red are shared by multiple neurons, limiting the tree from 
generating all three outputs simultaneously. 
Augmented Forwarding Links. We introduce forwarding links at intermediate levels between adja-
cent adders that do not share the same parent, as Figure 1 (h) illustrates, to overcome the challenge of 
supporting multiple parallel reductions. Using these forwarding links, neuron 1 and 2 can perform re-
duction simultaneously. However, neuron 1 still conflicts with neuron 2 because of limited bandwidth 
near the root node highlighted as red in Figure 1 (h).  
Fat Links. As Figure 1 (i) shows, we provide extra bandwidth near the root so that multiple reduction 
results can be delivered to the root node connected with global buffer. With this final feature, we con-
struct augmented reduction tree (ART), a key component of MAERI. 
In the following section, we discuss how these network structures enable mapping arbitrary dataflow 
using case studies from DNN layers. 

Mapping Regular and Irregular Dataflows over MAERI 
To enable efficient mapping of regular and irregular dataflows on the same architecture, MAERI 
constructs instances called virtual neuron (VN) for each neuron and map them onto the computa-
tion resources. 

Virtual Neurons 
Because each weighted-sum operation corresponds to a neuron in each DNN, grouping compute units 
for a neuron is analogous to constructing a VN structure inside the DNN accelerators. Therefore, we 
name a group of compute units allocated for a neuron as a VN. Note that different dataflows can effec-
tively be viewed as different neuron sizes; thus we can abstract various dataflows into the size of VNs. 
For CNNs, VN sizes for convolutional, pooling, and FC layers are weight filter size, pooling window 
size, and input activation size, respectively. For LSTMs, VN sizes for gate values, state, and output 
computation are (input size) +2, (input size) +2, 2, and 1, respectively. The problem of mapping different 
dataflows is analogous to mapping different sized virtual neurons over the multipliers and adders. More-
over, sparsity and cross-layer [4] mapping lead to multiple VN sizes at the same time.  

Mapping Example 
MAERI supports simultaneous mapping of VNs with different sizes, as shown in Figure 1(j) and (k). 
We present two mapping examples: a sparse convolution whose full filter size is 9 in Figure 1(j), and 
the forget/input/output gate computation of an LSTM in Figure 1(k). For sparse convolution, we map 
virtual neuron 0, 1, and 2 for weight channel 0,1, and 2 for the 6th convolutional layer of VGGnet-16 
[10] and assume the number of non-zero weights are 5, 6, and 4, respectively. MAERI supports struc-
tured weight sparsity that does not require dynamic pair matching of input and weight values. Because 
weight values are known before runtime, we utilize a simple compiler technique to order input values 
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corresponding to the structural sparsity we exploit. 
For LSTM example, we map gate computation of a hidden layer in Google translation decoder LSTM 
[11]. Because the input size of a hidden layer is 1024, we fold it onto 16 multiplier switchlets in this 
example. The mapping (i.e., VN construction) is performed by the ART reconfiguration controller. The 
controller recursively inspects active multiplier switch for a virtual neuron and determines the use of 
each forwarding link, as described in supplementary material. 

Dataflows and Mappings Supported by MAERI 
With the capability of constructing arbitrary sized virtual neurons at runtime based on the actual neuron 
sizes, MAERI can map any DNN layer, partitioning, and weight-sparsity approach, since DNNs are 
which are inherently multi-dimensional MAC operations. The only limiting factor of mapping is the 
number of multiplier and adder switchlets of MAERI. For example, if the size of a neuron exceeds the 
number of multiplier switchlets of MAERI, the neuron needs to be temporally folded. This limitation is 
common in any hardware accelerator because of finite resources. MAERI’s flexible ART structure en-
ables it to support anywhere from VNs of size 1 to the entire array size. However, the number and size 
of the VNs affects the distribution and reduction bandwidth requirement. When the number of VN is 
large, the bandwidth requirement also increases. We present the effect of distribution and reduction 
bandwidth in Figures 2(m) and 3. Moreover, MAERI is tuned for enabling efficient spatial reduction. 
Given a DNN layer, finding the optimal dataflow [15], and optimal mapping strategy over MAERI is 
an open research question for future work.  
We also note that one can potentially swap the MAERI multipliers and adders with other compute 
units/ALUs, enabling MAERI to map and run any variant of map-reduce-based applications. 

IMPLEMENTATION 
We implement MAERI architecture with Bluespec System Verilog (BSV) and synthesize the design 
using a Synopsys 28nm educational library. We compare the area and power of MAERI with Eyeriss 
[1] and a systolic array (similar to TPU [9]). We provide two flavors of comparison; compute-match 
and area-match in Figure 2. The compute match fixes the number of PEs (or multiplier switchlets) 
to 168, the number of PEs in Eyeriss, and the area-match restricts the area to that of Eyeriss, placing 
as many compute units as possible. 

In compute-match, MAERI consumes 37% less area but 7% more power compared to Eyeriss. How-
ever, MAERI requires 32% more area and consumes 96% more power compared to systolic array 
in compute-match comparison. The area is the cost of reconfigurability that provides performance 
benefits. Please note that the power consumption is post-synthesis power that does not consider 
actual run time. Because MAERI reduces overall runtime, the actual energy consumption is compa-
rable in CNNs and less in LSTMs, as we show later in Figure 2. In area-match, MAERI and systolic 
array houses 2.33X and 7.09X more compute units compared to Eyeriss with 98% and 137% more 
power, respectively. Although systolic array is area- and power-efficient compared to MAERI, it 
requires more run time and sometimes more energy with irregular dataflows because of its rigid 
interconnects. In the following section, we discuss such run time and energy aspects. We also study 
the area impact of the distribution and reduction bandwidth in Figure 2(f) and (g). With higher dis-
tribution bandwidth, additional simple switchlets are needed, adding area. Increased reduction band-
width however only adds additional forwarding wires through the adders, no logic, leading to 
minimal area increase. In all cases, we observe the SRAMs in the prefetch buffer dominating area.  
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Figure 2: (a-g) Area requirement and post-layout power consumption of MAERI, systolic array (SA), 
and Eyeriss. (a) and (b) assume the same number of compute units (PE/multiplier switchlet). (c) 
and (d) assumes the same area as Eyeriss for all designs. (e) shows the area over number of PEs. 
(f) and (g) shows the area increase by extra distribution and reduction bandwidth, respectively, for 
MAERI with 64 multiplier switchlets. Total run time normalized to an ideal accelerator with 64 
compute units (PEs/multiplier switchlets) that has infinite NoC bandwidth and one-cycle compute 
units for CNN (h) and LSTM (j).  Energy consumption normalized to that of MAERI for Alexnet C1 
(i) and LSTM0 (k). Numbers below each LSTM label indicates the LSTM dimension (input size and 
number of hidden layers). (l) The effect of reduction network topology on MS utilization in steady 
state with 64 multipliers and adders. (m) The effect of bandwidth on stall rate when processes non-
edge inputs in VGG16- CONV1 with 64 multiplier switches. We present stall rate in a heatmap with 
distribution and reduction bandwidth on x and y axis, respectively. The dark area shows bandwidth 
pair with high stall rate. White space shows bandwidth combinations that achieve zero stalls. 
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EVALUATION 
Runtime and Energy. To evaluate runtime, we run RTL simulation and measure total runtime in 
cycles. We compute power-delay product to estimate energy consumption. For workloads, we use 
Alexnet [12] and VGGnet-16 [11], and five RNNs (LSTM) from recent publications such as Google 
translator [11]. We use an 8x8 systolic array and a row-stationary accelerator with 64 PEs similar 
to Eyeriss [1] as our baselines. MAERI has 64 multiplier switchlets to match the number of compute 
units with the baselines. Figure 2(h-m) shows our results. In CNNs, MAERI reduced the run time 
up to 64% and by 42% in average. These benefits come from (i) higher multiplier utilization in 
MAERI compared to the baselines (depending on the filter dimensions), and (ii) fewer stalls (due to 
high bandwidth distribution and collection networks). The reduced runtime also decreased the en-
ergy consumption. MAERI requires 28% and 7.1% less energy in average compared to Eyeriss and 
Systolic array, respectively. In LSTMs, MAERI reduces 60% and 55% of run time and 21% and 
52% less energy compared to systolic array and row-stationary accelerator. MAERI is significantly 
better in LSTMs because of high distribution bandwidth and its flexibility of mapping large size of 
neurons that appear in LSTMs. 

Impact of Communication Topology and Bandwidth on Utilization and Stalls.  

The topology of the reduction network of MAERI affects the both the mapping efficiency (i.e., whether or not 
the multiplier can map a computation) and its utilization (i.e., whether or not it can be used every cycle). This 
is because it determines how many spatial reductions can occur simultaneously. Figure 2(i) quantifies the uti-
lization of the MSs in steady state (while processing non-edge input volume) with various VN sizes with three 
reduction network choices – binary adder tree, fat adder tree, and ART. We assume sufficient bandwidth from 
the distribution tree in this experiment. The binary adder tree can provide 100% utilization only when the VN 
size is close to the multiplier array size (64 in this case). The Fat Tree provides 100% utilization only when VN 
size is powers of two. MAERI provides close to 100% utilization for all VN sizes, except for cases when 64 
mod VN size is not zero. This is not a limitation of the topology – but of the mapper since we do not have a 
compiler to support partial VNs yet. The figure also shows that mapping multipler smaller VNs is more efficient 
than larger VNs. 

The bandwidth of the distribution and reduction networks of MAERI affects the stalls at the multipliers and 
adders. Insufficient distribution bandwidth results in it waiting for new weights/inputs, while insufficient re-
duction bandwidth serializes reductions across the VNs. This naturally depends on the DNN layer being 
mapped. Figure 2(m) shows the percentage of multipliers stalled when running VGG16-CONV1 over MAERI 
with various combination of distribution and reduction bandwidth. We observe that the bandwidth needs to be 
larger than 16X and 8X respectively to have zero stalls in the example. 

Impact of Communication Bandwidth on Runtime and Energy. Figure 3(a), (b), (c), and (d) 
present the LSTM and CNN run time and energy of MAERI with varying bandwidth of the distri-
bution network. A 16X design is a fat tree, a 1X is a binary tree, with other data points in between. 
The LSTM computation is highly sensitive to distribution bandwidth because of its lack of data 
reuse opportunity unlike CNNs. Thus, a wide distribution bandwidth significantly reduces runtime, 
as shown in Figure 3(a). However, in CNNs, distribution bandwidth does not provide run time im-
provement beyond certain point. This is because the maximum distribution bandwidth requirement 
in a steady state (when processing non-edges, which is the common case) is determined by the 
number of VNs mapped on MAERI. We can interpret these results as roof-line performance as 
suggested in a recent work [8]. The energy consumption presented in (b) and (d) implies that extra 
distribution bandwidth can reduce total energy consumption. However, beyond a certain point, en-
ergy consumption greatly increases because of roof-line performance limited by number of VNs and 
increased power consumption to support extra bandwidth. The 16X distribution bandwidth requires 
16% more area compared to 1X, as presented in Figure 2(f). Therefore, based on the target applica-
tion, distribution bandwidth should be carefully selected. 

Reduction bandwidth also dramatically changes the overall run time, as Figure 3(e) and (g) present. How-
ever, unlike distribution bandwidth, the cost of extra reduction bandwidth is relatively minimal as Figure 
2(f) and (g) show. Therefore, energy consumption results show similar pattern as run time, as Figure 3(f) 
and (h) present. Also, reduction bandwidth reaches its roof-line performance earlier than distribution 
bandwidth because the roof-line of reduction bandwidth is determined by number of virtual neurons with 
smaller order than distribution. Therefore, it is beneficial to employ roof-line reduction bandwidth for 
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target neural network. From an area perspective, providing 16X reduction bandwidth has nearly the same 
area cost as the 1X reduction bandwidth since our collection structure is light-weighted so the area in-
crease is minor compared to the entire accelerator area. For pure collection network area, the area cost 
increases by 20% for 16X reduction bandwidth, as presented in Figure 2(g). This sub-linear overhead is 
because the collection network is dominated by the adders – the fat links are essentially bypass paths that 
do not add much to the area. However, note that the actual benefits can be limited by the write bandwidth 
to the global buffer; larger reduction network bandwidth than that of global buffer does not improve the 
run time. 

 

Figure 3: The impact of distribution/reduction bandwidth on LSTM (a)/(e) run time and (b)/(g) 

energy and CNN (c)/(g) run time and (d)/(h) energy. All the results are based on 64-multiplier 

switchlet MAERI and 64X bandwidth at the root to remove any impact of reduction bandwidth. 

LSTM and CNN results are normalized to the results of 16X bandwidth on LSTM0 and Alexnet 

C1 respectively.  

CONCLUSION 
Most DNN accelerators today interconnect PEs in a rigid tightly coupled manner which 
makes it impossible to map irregular dataflows (due to layer types, cross-layer fusion, 
sparsity, and so on), leading to under-utilization and/or stalls. We present a communica-
tion-driven approach called MAERI to address this challenge. MAERI carefully places 
tiny switches along fine-grained compute resources and connects them in topologies 
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tuned for the traffic classes within DNN accelerators, namely distribution, local forward-
ing, reduction, and collection. MAERI translates each dataflow into a problem of map-
ping different sized neurons, which the MAERI networks support through 
reconfiguration of the switches. This approach provides extremely high compute-unit 
utilization, boosting performance and energy-efficiency. 
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