

Special Issue: Hardware Acceleration

A Communication-centric
Approach for Designing
Flexible DNN Accelerators

High computational demands of DNNs coupled with their
pervasiveness across cloud and IoT platforms have led to the
emergence of DNN accelerators employing hundreds of
processing elements (PE). Most DNN accelerators are optimized
for regular mapping of the problems, or dataflows, emanating from

dense matrix multiplications in convolutional layers. However, continuous innovations in DNN
including myriad layer types/shapes, cross-layer fusion, and sparsity have led to irregular dataflows
within accelerators, which introduces severe PE underutilization because of rigid and tightly-coupled
connections among PEs and buffers. To address this challenge, this article proposes a
communication-centric approach called MAERI for designing DNN accelerators. MAERI’s key novelty
is a light-weight configurable interconnect connecting all compute and memory elements that enables
efficient mapping of both regular and irregular dataflows providing near 100% PE utilization.
Keywords: Deep Neural Networks, Accelerators, Dataflow, Network-on-chip

INTRODUCTION
The microarchitecture of DNN inference engines is currently an area of active research in the computer
architecture community. Graphics processing units (GPUs) are extremely efficient for training due to
the mass parallelism they offer, multi-core central processing units (CPUs) continue to provide platforms
for algorithmic exploration, and FPGAs provide power-efficient and configurable platforms for algo-
rithmic exploration and acceleration; but for mass deployment across various domains (smartphones,
cars, etc.), specialized DNN accelerators are necessary to maximize performance per watt. This observa-
tion has led to a flurry of ASIC proposals for DNN inference accelerators over the recent years [1, 2, 4-8].
DNNs have millions of parameters, which needs to be mapped over limited compute and memory re-
sources in the DNN accelerator. We define each unique mapping as a “dataflow”. The dataflow deter-
mines the degree of data reuse (which is critical to throughput and energy efficiency of the accelerator),
and determines the communication pattern between the compute and memory elements. We identify

Hyoukjun Kwon
Ananda Samajdar
Tushar Krishna
Georgia Institute of
Technology

 IEEE MICRO

three sources that affect dataflow – DNN topology, DNN dataflow graph (DFG) partitioning and map-
ping, and DFG transformations. On the topology front, DNNs today use a mix of convolution, recurrent,
pooling, and fully-connected layers; new layer types such inception [3], dilated convolution [13], and
transposed convolution [14] are also being actively explored. DNN dataflow graph (DFG) can be par-
titioned in myriad ways to map over the compute array – layer by layer [1], across layers [4], kernels,
channels, or outputs, as each approach has different trade-offs for data reuse and energy-efficiency. The
DFG can also be transformed by removing some of the edges whose weights are zero or close to zero
[5-6] to reduce power consumption inside DNN accelerators. Naturally, each of these three approaches
can lead to unique and often irregular (especially with fused layer [4] or sparsity optimizations [5-6])
dataflows. Dataflows directly impact the performance and energy-efficiency of accelerators, as they
have a direct impact on the amount of data movement, data reuse, and memory accesses, as prior works
have shown [7, 15].
Unfortunately, state-of-the-art DNN accelerators today, such as Google TPU [8], Eyeriss [1], and their
variants, employ dense 2D arrays – which are optimized for a very regular dataflow, namely dense
matrix multiplications present in convolution operations. Irregular dataflows can lead to heavy underuti-
lization (e.g., some long short-term memories (LSTMs) only utilize 4% of the MAC units on the TPU
[8]). We claim that the reason DNN accelerators today cannot map arbitrary dataflows is because the
interconnection fabric connecting the MAC units are either limited in terms of their connectivity (e.g.,
mesh), or their bandwidth (e.g., bus). Our community’s approach to addressing this issue has been quite
reactive – every new DNN topology/DFG mapping/sparsity optimization has led to a new DNN ASIC
proposal [4,5,6]. This makes the hardening of DNN accelerators into an IP or a discrete chip that is
future-proof for the rapidly evolving DNN landscape impractical.
How do we design a single accelerator substrate that can handle the growing number of dataflows re-
sulting from multiple kinds of layers, dense and sparse connections, and various partitioning ap-
proaches? We propose to make the interconnects within the accelerator reconfigurable. Our insight is
the following: The DNN DFG is fundamentally a multi-dimensional multiply-accumulate (MAC) cal-
culation. Each dataflow is essentially some kind of transformation of this multi-dimensional loop [7].
Thus, at the heart of each dataflow that exists today or might be proposed in future, is still a collection of MAC
operations spread across the processing engines. We propose to design DNN accelerators as a collection
of multiply and adder engines, each augmented with tiny configurable switches (called switchlets) that
can be configured to support different kinds of dataflows. Our design is called MAERI (Multiply-Ac-
cumulate Engine with Reconfigurable Interconnect). MAERI is a communication (rather than a com-
pute)-centric approach for designing DNN accelerators. Figure 1 shows an overview. It enables on-
demand allocation of multipliers and adders depending on the dataflow by configuring the switches,
thereby providing high compute utilization. It also provides high-bandwidth non-blocking interconnect
topologies tailored to the communication patterns within DNN accelerators for maximizing data reuse
and minimizing stalls.
We demonstrate MAERI with multiple case studies. On average, MAERI reduces the run time by 42%
and 57% over Eyeriss [1], and 23% and 148% over Systolic Arrays [8] for state-of-the-art CNNs and
LSTMs respectively. This translates to energy reductions of up to 36%.

 HARDWARE ACCELERATION

Figure 1: (a) Compute unit pool abstraction provided by MAERI (b) MAERI architecture to support
the abstraction, and (c) Switchlet architectures. (dNetworks in MAERI for data distribution (fat tree
with local forwarding at leaves) to the multiplier switchlets (a-c) and collection (fat-tree with local
forwarding at upper levels) to the buffer (d-f). Red links indicate insufficient bandwidth or link
conflicts. (g) and (h) show examples of mapping irregular dataflows over MAERI.

BACKGROUND AND MOTIVATION

Deep Neural Networks (DNNs)
Neural networks are a rich class of algorithms that can be trained to model the behavior of complex
mathematical functions. Neural networks model human brain with a large collection of “neurons" con-
nected with “synapses." Each neuron is connected with many other neurons and its output enhances or
inhibits the actions of the connected neurons. The connection is based on weights associated with syn-
apse. Therefore, computations for a neuron can be translated as weighted sum operations. Deep neural
networks (DNNs) have multiple internal (called hidden) neuron layers before the final output layer that
performs the classification. DNNs also involve pooling and activation operations. Pooling is a sampling
operation that reduces output feature map dimensions by the pooling window size. Activation is a non-
linear functions such as rectifier linear units (ReLU). Pooling and activation operations follow after some
of hidden layers in a DNN. Therefore, the weighted sum consists of the majority of computations in a

Implementation

X
X

X XX

X

X

Multiplier Pool

+
+

+
++ +

+

Adder Pool

X

(a) Abstraction

Group 0

Group 0

Group 1

Group 1

(b) MAERI Architecture

Adder Switchlet

Data_In

Fwd_In Fwd_Out

Data_Out
X

Input _L

Fwd_In_L

Fwd_Out_L
Input _R

Fwd_In_R

Fwd_Out_R

Output_Up

+/>

Multiplier Switchlet

(c) Switchlet Architecture

Data_In
Left_Out

Right_Out

Simple Switchlet

Inv

Inv

X X X XX X X X

+
+
+

+
+

+ +

Ac
ce

le
ra

to
r C

on
tro

lle
r

Dataflow
(from CPU)

+

X

Multiplier Switch

Adder Switch

Legend

Lookup
Table

X X X XX X X X

+
+
+

+
+

+ +

+

…

…

Weights

Inputs

Outputs

…

Distribution Tree

Augmented Reduction Tree

…

Activation Units

From/To
DRAM

Simple Switch

Fat link (4x BW)Fat link (4x BW)

Fat link (2x BW)

Forward linkForward link
Forward link

Fat link (4x BW)
Fat link (2x BW)

Fat link (2x BW)Fat link (2x BW)

Fat link (2x BW)Fat link (2x BW)

(g) Plain Reduction Tree

Nueron 1 Neuron 2 Neuron 3 Neuron 1 Neuron 2 Neuron 3

(h) Reduction Tree with
forwarding

Neuron 1 Neuron 2 Neuron 3

(i) Augmented
Reduction Tree (ART)

+ + + + + + + +

+ + + +

+ +

+

+ + + + + + + +

+ + + +

+ +

+

+ + + + + + + +

+ + + +

+ +

+

Nueron 1 Neuron 2 Neuron 3

(d) Plain Binary Tree
Nueron 1 Neuron 2 Neuron 3

(e) Fat-Distribution Tree
Nueron 1 Neuron 2 Neuron 3

(f) Fat-Distribution Tree with
Local LinksD

at
a

D
is

tr
ib

ut
io

n
an

d
Lo

ca
l C

om
m

un
ic

at
io

n
D

at
a

R
ed

uc
tio

n
an

d
C

ol
le

ct
io

n

Enable
Data

Reuse

Provide
Extra

Bandwidth

Augment
Extra
Links

Provide
Extra

Bandwidth

Legend Simple Switchlet (1:2 switch) Multiplier Switchlet + Adder Switchlet

X X X XX X X X

+
+

+
+

+

+ +

(j) Sparse Convolutional Layer

VN0

X X X XX X X X

+
+

+
+

+

+ +
VN1

+

VN2

X X X XX X X X

+
+

+
+

+

+ +

(k) LSTM Gate Value Computation

VN0

X X X XX X X X

+
+

+
+

+

+ +

+

Weights/Inputs Weights/Inputs Weights/Inputs Weights/Inputs

Partial Outputs Partial Outputs Partial Outputs Partial Outputs

 IEEE MICRO

DNN.

Spatial DNN Accelerators
The most dominant computation in DNNs, a weighted-sum, contains massive parallelization oppor-
tunity for element-wise multiplications and accumulations. To exploits this parallelism, spatial architec-
tures with hundreds of processing elements (PE) fed by a global buffer have been the most popular
hardware substrate for accelerating DNNs [1-2, 4-9]. The PEs consist of fixed- or floating-point multi-
ply-accumulate-unit (MAC) and local scratch pad memory usually implemented using SRAMs. Global
buffer is also a SRAM-based scratchpad memory, but it has larger size than local scratch pad memories
in PEs. Unlike GPUs, spatial architectures support direct PE to PE communication, enabling data reuse
both within and across PEs, reducing the number of memory accesses, and thereby energy consumption.

Network-on-Chip (NoC)
To support data reuse, spatial DNN accelerators use an on-chip communication substrate between the
PEs and the global buffer, called a network-on-chip (NoC). Buses, meshes and crossbars are the most
popular NoC topologies. Buses are cheap to implement but provide extremely low bandwidth (as they
support only one transmission at a time) while crossbars provide extremely high bandwidth but scale
horribly in terms of area and power; meshes provide a reasonable trade-off between these extremes and
are used extensively in modern multi-core CPUs. Mesh NoCs provide all-to-all connectivity that is re-
quired for cache coherence traffic. However, they provide a skewed bandwidth distribution across the
NoC links for DNN traffic, as highlighted by prior work [9], leading to PE stalls. Moreover, their area
and power is proportional or higher than that of the PEs themselves, making them an inefficient design
choice. To mitigate these issues, most DNN accelerators today tightly couple a fixed number of PEs
together using buses [1] or trees [2, 3] or neighbor-to-neighbor connections [8], and scale up by using
hierarchical NoCs [6]. Unfortunately, this approach naturally leads to under-utilization of PEs for irreg-
ular dataflows due to the inflexibility of mapping across arbitrary number of PEs, and leads to stalls if
the connections leading to the PEs do not support the required bandwidth for that dataflow. This work
addresses these challenges by designing an extremely light-weight communication fabric with the right
amount of flexibility to support arbitrary DNN dataflows, without requiring a full-fledged NoC.

APPROACH AND DESIGN

Communication Classes in DNN Accelerators
We classify communication flows within DNN accelerators [9] into the following traffic classes:

• Distribution: Distribution is communication from global buffer to PEs, which delivers
weights and input activations to be computed in each PE. Distribution requires multiple
simultaneous unicasts or multicasts (depending on the accelerator implementation) from
the global buffer to the PEs.

• Local forwarding: Local forwarding is direct communication (forwarding) between PEs
for data reuse in convolutional layers, reducing the number of reads from the global buffer.
Local forwarding requires multiple simultaneous unicasts between PEs.

• Reduction: Reduction is direct communication between PEs for accumulating partial
sums. Each reduction requires multiple simultaneous unicasts between PEs.

• Collection: Collection is communication from PEs to the global buffer to deliver final out-
put activations reduced within the PE array. Collection requires multiple unicasts from one
or more PEs (depending on how many unique outputs the array generates based on the
mapping strategy) to the global buffer.

 HARDWARE ACCELERATION

We leverage these traffic classes to construct a communication-driven spatial DNN accelerator archi-
tecture.

Designing a Fully-flexible DNN Accelerator
Supporting full PE utilization with myriad irregular DNN dataflows essentially requires DNN acceler-
ators to support customizable grouping of compute resources at runtime. To enable the illusion of mul-
tiplier/adder pools for fully flexible DNN accelerator described in Figure 1 (a), we separate out the
multipliers and adders from PEs to enable fine-grained mapping and embed them into tiny switches to
enable customizable groupings. We name the switches as multiplier switchlet and adder switchlet, based
on their functional units, and the entire architecture as MAERI (Multiply-Accumulate Engine with Re-
configurable Interconnects), as shown in Figure 1 (b).
MAERI supports multiple dataflows by reconfiguring each switchlet to directly deliver its computation
results to the desired destination switchlet for correct functionality. This approach programs data move-
ment, not computation, unlike traditional computer systems, and allows users to fully explore optimiza-
tion opportunities that involve irregular dataflow.
A key requirement for enabling this functionality is the right set of physical connections between the
switchlets. Instead of using a full-fledged all-to-all NoC and pay its area, power, and latency overheads,
we design a novel interconnection topology tuned for the traffic classes described in the previous section.
MAERI uses two separate networks – a distribution network and a collection network, as shown in
Figure 1. MAERI’s interconnection is fat-tree-based hierarchical networks with additional forwarding
links for non-blocking reductions, which we discuss next.

Distribution and Collection Networks with Local Forwarding
Based on the observation of traffic in DNN accelerators [9], we specialize NoC structures for
each traffic pattern: distribution with local forwarding and collection with reduction.

Distribution Network
The distribution network connects the global buffer to all the multiplier switchlets, and is responsible for
delivering inputs and filter weights. We list three features of our distribution network following the order
described in Figure 1(d)-(f).
Binary Tree. To support multicasting, we employ a binary tree-based distribution network, as shown
in Figure1(d). Although a bus also provides multicasting functionality (and has been used in prior ac-
celerators [1]), tree-based distribution is more energy efficient because a tree activates only the links
going towards the destinations while a bus broadcasts data all the time, even for unicasts.
Fat Links. To support multiple multicasts simultaneously, we provide higher bandwidth at the upper
levels of the tree. When the bandwidth at each level is double the one at the lower level, the distribution
network can support N/2 (where N is the number of leaves), which constructs a fat tree. This case is
extremely beneficial to fully-connected layers because it requires unique data to be delivered to each PE
at the same time, but comes at the cost of large wire overhead and more switches. Such a high bandwidth
is, however, not required for convolutional layers where data reuse requires lower distribution band-
width. MAERI allows designers to choose either the same bandwidth or twice at higher levels of tree at
design-time, based on the area and power budget of the accelerator. This is shown in Figure 1(e).
Local Forwarding Links. The leaves (multiplier switchlets) in the distribution network are connected
to each other directly, for local forwarding of weights between the multipliers, as shown in Figure 1(f).
This reduces the number of reads from the global buffer, and reduces the bandwidth requirement from
the distribution tree. Since we control the computation mapping across the multipliers, we only need
unidirectional forwarding links.

 IEEE MICRO

Collection Network
The collection network performs multiple simultaneous reductions and delivers multiple output activa-
tions to the global buffer via activation units. We call our topology as an augmented reduction tree
(ART). We list three features of ART following the order described in Figure 1(g)-(i).
Binary Tree. Binary-trees are well-suited for performing reductions and have been used in prior DNN
implementations to implement adder trees within PE clusters, and form our strawman design. However,
they have a key inefficiency: the fixed topology of a tree is inherently inefficient whenever the number
of partial sums to be accumulated is smaller than the width of the adder tree. Figure 1(g) illustrates this.
Suppose there are 16 multipliers, all connected via a 16-node binary reduction tree. Each node in the
reduction tree is an adder. This tree is perfect for performing a reduction for a 16-input neuron. How-
ever, suppose we map three neurons over these multipliers, each generating five partial sums, as Figure
1 (g) shows. Each neuron requires four additions to generate an output, so the total additions required is
12. The reduction tree contains 16 adders, which should be sufficient to perform the additions for all
neurons in parallel. However, the four links in red are shared by multiple neurons, limiting the tree from
generating all three outputs simultaneously.
Augmented Forwarding Links. We introduce forwarding links at intermediate levels between adja-
cent adders that do not share the same parent, as Figure 1 (h) illustrates, to overcome the challenge of
supporting multiple parallel reductions. Using these forwarding links, neuron 1 and 2 can perform re-
duction simultaneously. However, neuron 1 still conflicts with neuron 2 because of limited bandwidth
near the root node highlighted as red in Figure 1 (h).
Fat Links. As Figure 1 (i) shows, we provide extra bandwidth near the root so that multiple reduction
results can be delivered to the root node connected with global buffer. With this final feature, we con-
struct augmented reduction tree (ART), a key component of MAERI.
In the following section, we discuss how these network structures enable mapping arbitrary dataflow
using case studies from DNN layers.

Mapping Regular and Irregular Dataflows over MAERI
To enable efficient mapping of regular and irregular dataflows on the same architecture, MAERI
constructs instances called virtual neuron (VN) for each neuron and map them onto the computa-
tion resources.

Virtual Neurons
Because each weighted-sum operation corresponds to a neuron in each DNN, grouping compute units
for a neuron is analogous to constructing a VN structure inside the DNN accelerators. Therefore, we
name a group of compute units allocated for a neuron as a VN. Note that different dataflows can effec-
tively be viewed as different neuron sizes; thus we can abstract various dataflows into the size of VNs.
For CNNs, VN sizes for convolutional, pooling, and FC layers are weight filter size, pooling window
size, and input activation size, respectively. For LSTMs, VN sizes for gate values, state, and output
computation are (input size) +2, (input size) +2, 2, and 1, respectively. The problem of mapping different
dataflows is analogous to mapping different sized virtual neurons over the multipliers and adders. More-
over, sparsity and cross-layer [4] mapping lead to multiple VN sizes at the same time.

Mapping Example
MAERI supports simultaneous mapping of VNs with different sizes, as shown in Figure 1(j) and (k).
We present two mapping examples: a sparse convolution whose full filter size is 9 in Figure 1(j), and
the forget/input/output gate computation of an LSTM in Figure 1(k). For sparse convolution, we map
virtual neuron 0, 1, and 2 for weight channel 0,1, and 2 for the 6th convolutional layer of VGGnet-16
[10] and assume the number of non-zero weights are 5, 6, and 4, respectively. MAERI supports struc-
tured weight sparsity that does not require dynamic pair matching of input and weight values. Because
weight values are known before runtime, we utilize a simple compiler technique to order input values

 HARDWARE ACCELERATION

corresponding to the structural sparsity we exploit.
For LSTM example, we map gate computation of a hidden layer in Google translation decoder LSTM
[11]. Because the input size of a hidden layer is 1024, we fold it onto 16 multiplier switchlets in this
example. The mapping (i.e., VN construction) is performed by the ART reconfiguration controller. The
controller recursively inspects active multiplier switch for a virtual neuron and determines the use of
each forwarding link, as described in supplementary material.

Dataflows and Mappings Supported by MAERI
With the capability of constructing arbitrary sized virtual neurons at runtime based on the actual neuron
sizes, MAERI can map any DNN layer, partitioning, and weight-sparsity approach, since DNNs are
which are inherently multi-dimensional MAC operations. The only limiting factor of mapping is the
number of multiplier and adder switchlets of MAERI. For example, if the size of a neuron exceeds the
number of multiplier switchlets of MAERI, the neuron needs to be temporally folded. This limitation is
common in any hardware accelerator because of finite resources. MAERI’s flexible ART structure en-
ables it to support anywhere from VNs of size 1 to the entire array size. However, the number and size
of the VNs affects the distribution and reduction bandwidth requirement. When the number of VN is
large, the bandwidth requirement also increases. We present the effect of distribution and reduction
bandwidth in Figures 2(m) and 3. Moreover, MAERI is tuned for enabling efficient spatial reduction.
Given a DNN layer, finding the optimal dataflow [15], and optimal mapping strategy over MAERI is
an open research question for future work.
We also note that one can potentially swap the MAERI multipliers and adders with other compute
units/ALUs, enabling MAERI to map and run any variant of map-reduce-based applications.

IMPLEMENTATION
We implement MAERI architecture with Bluespec System Verilog (BSV) and synthesize the design
using a Synopsys 28nm educational library. We compare the area and power of MAERI with Eyeriss
[1] and a systolic array (similar to TPU [9]). We provide two flavors of comparison; compute-match
and area-match in Figure 2. The compute match fixes the number of PEs (or multiplier switchlets)
to 168, the number of PEs in Eyeriss, and the area-match restricts the area to that of Eyeriss, placing
as many compute units as possible.

In compute-match, MAERI consumes 37% less area but 7% more power compared to Eyeriss. How-
ever, MAERI requires 32% more area and consumes 96% more power compared to systolic array
in compute-match comparison. The area is the cost of reconfigurability that provides performance
benefits. Please note that the power consumption is post-synthesis power that does not consider
actual run time. Because MAERI reduces overall runtime, the actual energy consumption is compa-
rable in CNNs and less in LSTMs, as we show later in Figure 2. In area-match, MAERI and systolic
array houses 2.33X and 7.09X more compute units compared to Eyeriss with 98% and 137% more
power, respectively. Although systolic array is area- and power-efficient compared to MAERI, it
requires more run time and sometimes more energy with irregular dataflows because of its rigid
interconnects. In the following section, we discuss such run time and energy aspects. We also study
the area impact of the distribution and reduction bandwidth in Figure 2(f) and (g). With higher dis-
tribution bandwidth, additional simple switchlets are needed, adding area. Increased reduction band-
width however only adds additional forwarding wires through the adders, no logic, leading to
minimal area increase. In all cases, we observe the SRAMs in the prefetch buffer dominating area.

 IEEE MICRO

Figure 2: (a-g) Area requirement and post-layout power consumption of MAERI, systolic array (SA),
and Eyeriss. (a) and (b) assume the same number of compute units (PE/multiplier switchlet). (c)
and (d) assumes the same area as Eyeriss for all designs. (e) shows the area over number of PEs.
(f) and (g) shows the area increase by extra distribution and reduction bandwidth, respectively, for
MAERI with 64 multiplier switchlets. Total run time normalized to an ideal accelerator with 64
compute units (PEs/multiplier switchlets) that has infinite NoC bandwidth and one-cycle compute
units for CNN (h) and LSTM (j). Energy consumption normalized to that of MAERI for Alexnet C1
(i) and LSTM0 (k). Numbers below each LSTM label indicates the LSTM dimension (input size and
number of hidden layers). (l) The effect of reduction network topology on MS utilization in steady
state with 64 multipliers and adders. (m) The effect of bandwidth on stall rate when processes non-
edge inputs in VGG16- CONV1 with 64 multiplier switches. We present stall rate in a heatmap with
distribution and reduction bandwidth on x and y axis, respectively. The dark area shows bandwidth
pair with high stall rate. White space shows bandwidth combinations that achieve zero stalls.

1 2 3 4 5
0

1M

2M

3M

1 2 3 4 5
0

1M

2M

3M

Ar
ea

 (m
m

)2
0
1
2
3
4
5
6

Ar
ea

 (m
m

)2

0
1
2
3
4
5
6

Maeri SA Eyeriss Maeri SA Eyeriss

Maeri SA Eyeriss Maeri SA Eyeriss

0

100

200

300

Po
w

er
 (m

W
)

0

200

400

600

Po
w

er
 (m

W
)

C
om

p.

M
at

ch
Ar

ea

M
at

ch

(a) Area (b) Power

(c) Area (d) Power

N
or

m
al

ize
d

Ar
ea

0

1

Number of PEs

Systolic Array
Eyeriss
MAERI

16 32 64 128 168 16 32 64 128

2

3

(e) Area over number of PEs

Legend (e)

Legend (a-d)
Multiplier Switch
Reduction Network
Distribution Network
Local Buffer
Prefetch Buffer
Lookup Table
Compute (SA and Eyeriss)
Interconnect (SA and Eyeriss)

1

2

3

0

Ar
ea

 (m
m

)2

1

2

3

0

Ar
ea

 (m
m

)2

1X 2X 4X 8X 16X 1X 2X 4X 8X 16X

Dist BW = 1 Dist BW = 2 Dist BW = 4 Dist BW = 8 Dist BW = 16 Dist BW = 32 Dist BW = 64

Redt BW = 1

Redt BW = 2

Redt BW = 4

Redt BW = 8

Redt BW = 16

Redt BW = 32

Redt BW = 64

0

20

40

60

80

10 20 30 40 50 60
0

20

40

60

80

100

Virtual Neuron Size

U
til

iz
at

io
n

(%
)

0

5

10

15

0

5

10

15

N
or

m
al

iz
ed

 R
un

 T
im

e

LSTM0 LSTM1 LSTM2 LSTM3 LSTM4

Systolic Array
Row-stationary
MAERI (This work)

0

0.5

1

1.5

2

0

0.5

1

2

N
or

m
al

iz
ed

 E
ne

rg
y

LSTM0 LSTM1 LSTM2 LSTM3 LSTM4

1.5

Systolic Array
Row-stationary
MAERI (This work)

0

50

100

150

N
or

m
al

iz
ed

 R
un

 T
im

e

C1 C2 C3 C4 C5 C1 C3 C8 C10 C12
Alexnet VGG-16

Systolic Array
Row-stationary
MAERI (This work)

2 4 6 8 10
0

1

2

3

4

5

0

1

2

C1 C2 C3 C4 C5 C1 C3 C8 C10 C12
Alexnet VGG-16

Systolic Array
Row-stationary
MAERI (This work)3

4
N

or
m

al
iz

ed
 E

ne
rg

y

(h) CNN Run Time

(j)LSTM Run Time

(i) CNN Energy

(k) LSTM Energy
(1024, 9) (1024, 8) (1024, 3) (100, 2) (2000, 2) (1024, 9) (1024, 8) (1024, 3) (100, 2) (2000, 2)

(l) Utilization and Reduction Topologies

10 20 30 40 50 60
Virtual Neuron Size

M
S

U
til

iz
at

io
n

(%
)

0
20
40
60
80

100

(m) Stall Rate and Bandwidth

Stall
Rate(%)

1
20

40
60

80

ART (this work)
Fat adder tree
Binary adder tree

R
ed

uc
tio

n
B

an
dw

id
th

2
4
8

16
32
64

1 2 4 8 16 32 64
Distribution Bandwidth

0

(f) Area over distribution bandwidth (g) Area over reduction bandwidth

 HARDWARE ACCELERATION

EVALUATION
Runtime and Energy. To evaluate runtime, we run RTL simulation and measure total runtime in
cycles. We compute power-delay product to estimate energy consumption. For workloads, we use
Alexnet [12] and VGGnet-16 [11], and five RNNs (LSTM) from recent publications such as Google
translator [11]. We use an 8x8 systolic array and a row-stationary accelerator with 64 PEs similar
to Eyeriss [1] as our baselines. MAERI has 64 multiplier switchlets to match the number of compute
units with the baselines. Figure 2(h-m) shows our results. In CNNs, MAERI reduced the run time
up to 64% and by 42% in average. These benefits come from (i) higher multiplier utilization in
MAERI compared to the baselines (depending on the filter dimensions), and (ii) fewer stalls (due to
high bandwidth distribution and collection networks). The reduced runtime also decreased the en-
ergy consumption. MAERI requires 28% and 7.1% less energy in average compared to Eyeriss and
Systolic array, respectively. In LSTMs, MAERI reduces 60% and 55% of run time and 21% and
52% less energy compared to systolic array and row-stationary accelerator. MAERI is significantly
better in LSTMs because of high distribution bandwidth and its flexibility of mapping large size of
neurons that appear in LSTMs.

Impact of Communication Topology and Bandwidth on Utilization and Stalls.

The topology of the reduction network of MAERI affects the both the mapping efficiency (i.e., whether or not
the multiplier can map a computation) and its utilization (i.e., whether or not it can be used every cycle). This
is because it determines how many spatial reductions can occur simultaneously. Figure 2(i) quantifies the uti-
lization of the MSs in steady state (while processing non-edge input volume) with various VN sizes with three
reduction network choices – binary adder tree, fat adder tree, and ART. We assume sufficient bandwidth from
the distribution tree in this experiment. The binary adder tree can provide 100% utilization only when the VN
size is close to the multiplier array size (64 in this case). The Fat Tree provides 100% utilization only when VN
size is powers of two. MAERI provides close to 100% utilization for all VN sizes, except for cases when 64
mod VN size is not zero. This is not a limitation of the topology – but of the mapper since we do not have a
compiler to support partial VNs yet. The figure also shows that mapping multipler smaller VNs is more efficient
than larger VNs.

The bandwidth of the distribution and reduction networks of MAERI affects the stalls at the multipliers and
adders. Insufficient distribution bandwidth results in it waiting for new weights/inputs, while insufficient re-
duction bandwidth serializes reductions across the VNs. This naturally depends on the DNN layer being
mapped. Figure 2(m) shows the percentage of multipliers stalled when running VGG16-CONV1 over MAERI
with various combination of distribution and reduction bandwidth. We observe that the bandwidth needs to be
larger than 16X and 8X respectively to have zero stalls in the example.

Impact of Communication Bandwidth on Runtime and Energy. Figure 3(a), (b), (c), and (d)
present the LSTM and CNN run time and energy of MAERI with varying bandwidth of the distri-
bution network. A 16X design is a fat tree, a 1X is a binary tree, with other data points in between.
The LSTM computation is highly sensitive to distribution bandwidth because of its lack of data
reuse opportunity unlike CNNs. Thus, a wide distribution bandwidth significantly reduces runtime,
as shown in Figure 3(a). However, in CNNs, distribution bandwidth does not provide run time im-
provement beyond certain point. This is because the maximum distribution bandwidth requirement
in a steady state (when processing non-edges, which is the common case) is determined by the
number of VNs mapped on MAERI. We can interpret these results as roof-line performance as
suggested in a recent work [8]. The energy consumption presented in (b) and (d) implies that extra
distribution bandwidth can reduce total energy consumption. However, beyond a certain point, en-
ergy consumption greatly increases because of roof-line performance limited by number of VNs and
increased power consumption to support extra bandwidth. The 16X distribution bandwidth requires
16% more area compared to 1X, as presented in Figure 2(f). Therefore, based on the target applica-
tion, distribution bandwidth should be carefully selected.

Reduction bandwidth also dramatically changes the overall run time, as Figure 3(e) and (g) present. How-
ever, unlike distribution bandwidth, the cost of extra reduction bandwidth is relatively minimal as Figure
2(f) and (g) show. Therefore, energy consumption results show similar pattern as run time, as Figure 3(f)
and (h) present. Also, reduction bandwidth reaches its roof-line performance earlier than distribution
bandwidth because the roof-line of reduction bandwidth is determined by number of virtual neurons with
smaller order than distribution. Therefore, it is beneficial to employ roof-line reduction bandwidth for

 IEEE MICRO

target neural network. From an area perspective, providing 16X reduction bandwidth has nearly the same
area cost as the 1X reduction bandwidth since our collection structure is light-weighted so the area in-
crease is minor compared to the entire accelerator area. For pure collection network area, the area cost
increases by 20% for 16X reduction bandwidth, as presented in Figure 2(g). This sub-linear overhead is
because the collection network is dominated by the adders – the fat links are essentially bypass paths that
do not add much to the area. However, note that the actual benefits can be limited by the write bandwidth
to the global buffer; larger reduction network bandwidth than that of global buffer does not improve the
run time.

Figure 3: The impact of distribution/reduction bandwidth on LSTM (a)/(e) run time and (b)/(g)

energy and CNN (c)/(g) run time and (d)/(h) energy. All the results are based on 64-multiplier

switchlet MAERI and 64X bandwidth at the root to remove any impact of reduction bandwidth.

LSTM and CNN results are normalized to the results of 16X bandwidth on LSTM0 and Alexnet

C1 respectively.

CONCLUSION
Most DNN accelerators today interconnect PEs in a rigid tightly coupled manner which
makes it impossible to map irregular dataflows (due to layer types, cross-layer fusion,
sparsity, and so on), leading to under-utilization and/or stalls. We present a communica-
tion-driven approach called MAERI to address this challenge. MAERI carefully places
tiny switches along fine-grained compute resources and connects them in topologies

0

0.5M

1M

1.5M

2M

2.5M

3M

0

0.5M

1M

1.5M

2M

2.5M

3M

0

0.5

1

1.5

2

0

0.5
1.0

N
or

m
al

iz
ed

 R
un

 T
im

e

Alex C1 Alex C2 VGG C2 VGG C7 VGG C12

1.5
2.0

0

0.5

1

1.5

2

0

0.5

N
or

m
al

iz
ed

 E
ne

rg
y

Alex C1 Alex C2 VGG C2 VGG C7 VGG C12

1.0

(g) Run Time (CNN) (h) Energy (CNN)

0

1

2

3

0

1

3

N
or

m
al

iz
ed

 R
un

 T
im

e

LSTM0 LSTM1 LSTM2 LSTM3 LSTM4

2

0

1

2

3

0N
or

m
al

iz
ed

 E
ne

rg
y

LSTM0 LSTM1 LSTM2 LSTM3 LSTM4
(e) Run Time (LSTM) (f) Energy (LSTM)

1.5
2.0

1

2

3

0

0.5

1

1.5

2

2.5
B
C
D
E
F

0
0.5
1.0

2.5

N
or

m
al

iz
ed

 R
un

 T
im

e

Alex C1 Alex C2 VGG C2 VGG C7 VGG C12

1.5
2.0

0

0.5

1

1.5 B
C
D
E
F

0

0.5
N

or
m

al
iz

ed
 E

ne
rg

y

Alex C1 Alex C2 VGG C2 VGG C7 VGG C12

1.0

(c) Run Time (CNN) (d) Energy (CNN)

0

2

4

6

8

10

B
C
D
E
F

0
2
4

10

N
or

m
al

iz
ed

 R
un

 T
im

e

LSTM0 LSTM1 LSTM2 LSTM3 LSTM4

6
8

0

1

2

3

4

5
B
C
D
E
F

0
1
2

5

N
or

m
al

iz
ed

 E
ne

rg
y

LSTM0 LSTM1 LSTM2 LSTM3 LSTM4

3
4

(a) Run Time (LSTM) (b) Energy (LSTM)
1.5

8X 16X1X 2X 4XLegend (Bandwidth) * nX indicates that NoC can deliver
 n data points simultaneously

D
is

tr
ib

ut
io

n
B

an
dw

id
th

 S
tu

dy
R

ed
uc

tio
n

B
an

dw
id

th
 S

tu
dy

Legend (Area)

 HARDWARE ACCELERATION

tuned for the traffic classes within DNN accelerators, namely distribution, local forward-
ing, reduction, and collection. MAERI translates each dataflow into a problem of map-
ping different sized neurons, which the MAERI networks support through
reconfiguration of the switches. This approach provides extremely high compute-unit
utilization, boosting performance and energy-efficiency.

ACKNOWLEDGEMENT
We thank Michael Pellauer from NVIDIA for feedback on this approach. We thank
Bluespec Inc. for providing us with a free university license and tech support for Bluespec
System Verilog.

REFERENCES
1. Yu-Hsin Chen, Joel Emer, and Vivienne Sze. "Eyeriss: A spatial architecture for

energy-efficient dataflow for convolutional neural networks." in ACM/IEEE
International Symposium on Computer Architecture (ISCA), 2016.

2. NVIDIA, "NVDLA Deep Learning Accelerator." NVIDIA, 2017, nvdla.org
3. Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir

Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich, "Going
Deeper with Convolutions." in IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2015.

4. Manoj Alwani, Han Chen, Michael Ferdman, and Peter Milder. "Fused-layer CNN
accelerators." in IEEE/ACM International Symposium on Microarchitecture (MICRO),
Article No. 22, 2016.

5. Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A. Horowitz, and
William J. Dally. "EIE: efficient inference engine on compressed deep neural
network." in ACM/IEEE International Symposium on Computer Architecture (ISCA),
2016.

6. Angshuman Parashar, Minsoo Rhu, Anurag Mukkara, Antonio Puglielli, Rangharajan
Venkatesan, Brucek Khailany, Joel Emer, Stephen W. Keckler, and William J. Dally.
"Scnn: An accelerator for compressed-sparse convolutional neural networks." in
ACM/IEEE International Symposium on Computer Architecture (ISCA), 2017.

7. Wenyan Lu, Guihai Yan, Jiajun Li, Shijun Gong, Yinhe Han, and Xiaowei Li,
“Flexflow: A fexible dataflow accelerator architecture for convolutional neural
networks,” in IEEE International Symposium on High Performance Computer
Architecture (HPCA), 2017.

8. Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal,
Raminder Bajwa, Sarah Bates et al. "In-datacenter performance analysis of a tensor
processing unit." in ACM/IEEE International Symposium on Computer Architecture
(ISCA), pp.1-12, 2017.

9. Hyoukjun Kwon, Ananda Samajdar, and Tushar Krishna, "Rethinking NoCs for
Spatial DNN Accelerators.", in ACM International Symposium on Network-on-Chip
(NOCS), 2017.

10. Karen Simonyan and Andrew Zisserman, "Very Deep Convolutional Networks for
Large Scale Image Recognition.", in International Conference on Learning
Representations (ICLR), 2015.

11. Yonghui We, et. al., "Google's Neural Machine Translation System: Bridging the Gap
between Human and Machine Translation.", Arxiv Preprint, 2016.

12. Alex Krizhevsky, Ilya Sutskever, and Geoffery E. Hinton, "Imagenet Classification
with Deep Convolutional Neural Networks.", in Conference on Neural Information
Processing Systems (NIPS), 2012, pp.1097-1105.

13. Fisher Yu and Vladlen Koltun, “Multi-scale Context Aggregation by Dilated
Convolutions.”, in International Conference on Learning Representations (ICLR),
2016.

14. Matthew D. Zeiler, Dilip Krishnan, Graham W. Taylor, and Rob Fergus,
“Deconvolutional Networks.”, in IEEE Computer, 2010, pp. 2528-2535.

 IEEE MICRO

15. Hyoukjun Kwon, Michael Pellauer, and Tushar Krishna, “An Analytic Model for Cost-
Benefit Analysis of Dataflows in DNN Accelerators”, https://arxiv.org/abs/1805.02566

ABOUT THE AUTHORS
Hyoukjun Kwon is a Ph.D. student at School of Computer Science, Georgia Institute of
Technology. He received bachelor’s degree in computer science and engineering and envi-
ronmental material science at Seoul National University in 2015. His research interest in-
cludes computer architecture, network-on-chip, and spatial accelerators for deep learning
and graph applications.

Ananda Samajdar is pursuing his PhD from School of Electrical and Computer Engineer-
ing at Georgia Tech. He has completed his bachelors in Electronics and Communication
Engineering from Indian Institute of Information Technology, Allahabad, in 2013. Prior to
his PhD, Anand was a full-time VLSI design engineer at Qualcomm India. His research in-
terests are computer architecture, VLSI design and machine learning.

Tushar Krishna (S’08–M’15) received the B.Tech. degree in electrical engineering from
IIT Delhi, New Delhi, India, in 2007, the M.S.E. degree in electrical engineering from
Princeton University, Princeton, NJ, USA, in 2009, and the Ph.D. degree in electrical engi-
neering and computer science from the Massachusetts Institute of Technology, Cambridge,
MA, USA, in 2014. He was a Researcher with the VSSAD Group, Intel, Hudson, MA,
USA, from 2013 to 2015, and a Post-Doctoral Researcher with the MIT SMART-LEES
Center in 2015. He has been an Assistant Professor with the School of Electrical and Com-
puter Engineering, Georgia Institute of Technology, Atlanta, GA, USA, since 2015. His
current research interests include computer architecture, interconnection networks, on-chip
networks, deep-learning accelerators, and FPGAs.

