]

®

Designing CNN Accelerators
Day 2

Hyoukjun Kwon
(hyoukjun@gatech.edu)

Georgia Institute of Technology
Synergy Lab (http://synergy.ece.gatech.edu)

@SNU
Dec 27, 2017

Day 2 Agenda

« BSV Sequential Logic implementation and
execution model
— Memory Elements
— Latency-Inter-module Communication
— Modules with Multiple Rules

 Traffic Patterns in CNN Accelerators
— Scatter
— Gather
— Local

* Fixed Point Adder/Multiplier

Memory Element Instantiation

 Memory Elements as submodules

— Memory elements (register, FIFO) are implemented
as independent modules

— We instantiate memory elements as submodules

* (ModulelnterfaceName) (user-defined module name) <-
(ModuleName in implementation)

— EX)
Reg#(Bit#(16)) myReg <- mkReg(0);

\ J \ J
| I

A polymorphic Load implenetation in
Interface “Reg” module "mkReg”

Memory Elements in BSV

* Register
— Initialization (module name)
« mkReg(initial_value): Assign an initial value
 mkRegU: Don’t assign an initial value

— Operations
« Read: multiple read within a cycle is allowed
« Write (‘<="): only one write within a cycle is allowed
written value is visible in the next cycle

— Operation scheduling
* Read < Write

Memory Elements in BSV

* Register
— Example
Reg#(Bit#(4)) regA <- mkReg(2);
Reg#(Bit#(4)) regB <- mkRegU;
rule doExample;

regA <=regA + 1; | regAvalue is read twice
regB <=reg A: — Written data is visible in the next
| cycle
endrule

e | o0 1 2 | 3 | 4

regA Value
regB Value

Memory Elements in BSV

* FIFO (First-In-First-Out)
— Operations
* enq: put a new element to the tail of a FIFO
« deq: remove the head element (if exists)
« first: returns the head element value (if exists)
* notEmpty: returns true if the FIFO is not empty

— Initialization

* mkPipelineFifo: enqg/first occurs after deq
« mkBypassFifo: deg/first occurs after eng

Memory Elements in BSV

* FIFO (First-In-First-Out)
— Declaration Syntax
 Fifo#(Num_Elements, Types)
user-defined_fifo_name <- (initilization)
« EX) Fifo#(3, Bit#(4)) myFifo <- mkPipelineFifo

— Automatic rule/method stall
 If a FIFO has no element and a rule tries to run ‘deq’ or ‘first’
 If a FIFO is full and a rule tries to run ‘enq’
* For both cases, the rule does not fire (execute) at that cycle

The stalled rule runs as soon as an element is enqued into the FIFO
(for deqg/first) or an element is dequed from the FIFO (for enq).

Memory Elements in BSV

* FIFO (First-In-First-Out)
— Operation Example

rule enq
ProduceData

first rule
ConsumeData

deq

Memory Elements in BSV

* FIFO (First-In-First-Out)
— Operation Example1
Reg#(Bit#(16)) cycleReg <- mkReg(0);
Fifo#(2, Bit#(4)) fifoA <- mkPipelineFifo;

rule countCycles;
cycleReg <= cycleReg + 1;
endrule

rule produceData;
fifoA.eng(truncate(cycleReq));
endrule

Memory Elements in BSV

* FIFO (First-In-First-Out)
— Operation Example1
rule consumeData;
fifoA.deq; $display(“Consumed %d”, fifoA.first);
endrule

___cde o0 | 1 | 2 | 3 | 4

fifoA.enq
fifoA.first

consumeData fire?

Rule execution order: consumeData -> produceData

What happens when we use bypass FIFO?

Memory Elements in BSV

* FIFO (First-In-First-Out)
— Operation Example2
Reg#(Bit#(16)) cycleReg <- mkReg(0);
Fifo#(2, Bit#(4)) fifoA <- mkBypassFifo;

rule countCycles;
cycleReg <= cycleReg + 1;
endrule

rule produceData;
fifoA.enq(truncate(cycleReq));
endrule

Memory Elements in BSV

* FIFO (First-In-First-Out)
— Operation Example2
rule consumeData;
fifoA.deq; $display(“Consumed %d”, fifoA. first);
endrule

___cde o0 | 1 | 2 | 3 | 4

fifoA.enq
fifoA.first

consumeData fire?

Rule execution order: produceData -> consumeData

Memory Elements in BSV

* FIFO (First-In-First-Out)
— Operation Example

stall (isFull?) stall (isEmpty?)

rule enq rule
ProduceData

ConsumeData

deq
Implicit stall control based on FIFO occupancy
Enables “latency insensitive inter-module communication”

Day 2 Agenda

« BSV Sequential Logic implementation and
execution model

— Latency-Inter-module Communication
— Modules with Multiple Rules

 Traffic Patterns in CNN Accelerators
— Scatter
— Gather
— Local

* Fixed Point Adder/Multiplier

Ll Inter-Module Communication

« Latency-insensitive (LI) inter-module
communication model

Method 1

]
Method 2

Method N -

Module
Interface

Module B

Module A

Rules wait until (1) all the necessary data is in input FIFOs and
(2) at least one slot of output FIFO is available Why is it good?

15

Module Interface and Methods

* Defining an interface (syntax)
// interface definition
interface (Interface_Name);
// method definition
method (return_type) (method_name) (arguments);
// an interface can contain multiple methods
endinterface

Module Interface and Methods

« Example
interface ALU;
method Action putArguments(OpCode newQOp,
Word newArgA, Word newArgB);
method ActionValue#(Word) getResults;
method Bool isinitialized;
endinterface

Action method: Similar to “void” in C. Involves state updates
(register, FIFO, etc.)

ActionValue#(T) method: Involves state updates (register, FIFO,
etc.) + returns a value with type T

Module Interface and Methods

* Implementing an interface — example

module mkExampleModule(ALU);

// module implementations (omited)
/....

method Action putArguments(OpCode newOp,
Word newArgA, Word newArgB);

state update

retu rn res:

returns a value

eValidAras <= False]
endmethod

method Bool islnitialized = inited; «——— return values can also

be described in this
endmodule
manner

Ll Inter-Module Communication

* Implementations

Method 1

]
Method 2

Method N -

Module
Interface

Module B

Module A

(1) methods just enque data to input FIFOs and deque from
output FIFOs

(2) rules deq input values from input FIFOs and enq output
values to output FIFOs

Ll Inter-Module Communication

* Implementation Example
interface ModuleBIlfc;

method|ActionfsendData(Bit#(16) newData);
method ' Bit#(16)) getData;
endinterface Required. Why?

Module B

Module A

Ll Inter-Module Communication

* Implementation Example
module mkModuleB(ModuleBlfc);
Fifo#(2, Bit#(16)) inputFifo <- mkPipelineFifo;
Fifo#(2, Bit#(16)) outputFifo <- mkPipelineFifo;

rule incValue;
let data = inputFifo.first; inputFifo.deq;
outputFifo.enqg(data+1);

endrule

method Action sendData(Bit#(16) newData);
inputFifo.enq(newData);
endmethod

method ActionValue#(Bit#(16)) getData;
outputFifo.deq; return outputFifo.first;
endmethod

endmodule

Day 2 Agenda

« BSV Sequential Logic implementation and
execution model

— Modules with Multiple Rules

 Traffic Patterns in CNN Accelerators
— Scatter
— Gather
— Local

* Fixed Point Adder/Multiplier

Modules with Multiple Rules
* Rule Scheduling

— Rules are fundamental atomic unit of hardware
behavior in BSV

 [All-or-Nothing] Run entire statements in a rule. If at least
one of the statements cannot be executed at a certain cycle
(e.g., eng to a full FIFO), the rule stalls.

— BSV scheduler tries to execute as many rules an
possible in parallel

— Executing all the rules might not be possible
When?

Modules with Multiple Rules

* Rule conflict
rule incValue;
let data = inputFifo.first; inputFifo.deq;
outputFifo.enq(data+1);
endrule

rule decValue;
let data = inputFifo.first; inputFifo.deq;

outputFifo.enq(data-2);
endrule What happens?

Modules with Multiple Rules

 Rule conflict

enq

enq

Resource Conflict
(Similar to Structural Hazard)

Although both ruleA and ruleB are ready to fire, only one of
them can fire each cycle.

Each method in an interface can be called only once at each cycle

Modules with Multiple Rules

* Independent scheduling

Empty Slot l Occupied Slot

RuleB cannot fire beacuse its output FIFO is full
Although ruleB cannot fire, ruleA can fire.

Modules with Multiple Rules

« Cyclic dependence
Fifo#(2, Bit#(16)) fifoA <- mkBypassFifo;
Fifo#(2, Bit#(16)) fifoB <- mkBypassFifo;

rule ruleA;
let data = fifoB.first; fifoB.deq;
fifoA.eng(data-1);
outputFifo.enq(data-1);
endrule

rule ruleB;
let data = fifoA.first; fifoA.deq;
fifoB.enq(data+1);

endrule

Any problem?

Modules with Multiple Rules

« Cyclic dependence

first, deq

—

enq m first, deq

Because enqued data to a bypassFIFO canbe dequed at the
same cycle, ruleA and ruleB forms a data dependence cycle

Solution?

enq

d OdId
Vv Odid

Modules with Multiple Rules

« Cyclic dependence

Temporal
Barrier

a o
|
r
|

vV 04Id

enq m first, deq

We can delay the visibility of enqued data at a certain point.
This breaks the data dependence cycle within the same cycle

Modules with Multiple Rules

« Cyclic dependence
Fifo#(2, Bit#(16)) fifoA <- mkBypassFifo;
Fifo#(2, Bit#(16)) fifoB <- mkPipelineFifo;

rule ruleA;
let data = fifoB.first; fifoB.deq;
fifoA.eng(data-1);
outputFifo.enq(data-1);
endrule

rule ruleB;
let data = fifoA.first; fifoA.deq;

fifoB.enq(data+1); .
How to analyze the timing?
endrule

Method Scheduling Order

m Method scheduling order

PipelineFIFO first < deg < enqg

BypassFifo enq < first < deq
Registers read < write
Cycle t
-

|
V\F;ﬁtge Order among methods of

different modules is flexible

HFO P-FIFO P-FIFO . .
before or after B-FIFO enq)
B-FIFO B- HFO B-FIFO

| Reg

Read

t +1 Cycle

Rule Scheduling Analysis

f_mJ Inconsistent!
enq first, de Cannot fire

simultaneously

 Original Version
first, deq

—

g OdId
Vv Odlid

FIFOA eng < deq, first
FIFOB deq, first > eng

Rule Scheduling Analysis

 Fixed Version

enq m first, de

Consistent! Can fire in parC‘Ie

Temporal
Barrier

a o
v 04Id

FIFOA deq, first
FIFOB deq, first < eng

Rule Guard

* Revisiting fixed cyclic dependence example
Fifo#(2, Bit#(16)) fifoA <- mkBypassFifo;
Fifo#(2, Bit#(16)) fifoB <- mkPipelineFifo;

rule ruleA (fifoA.notFull && fifoB.notEmpty);
let data = fifoB.first; fifoB.deq; Implicit rule guard

fifoA.eng(data-1)’ (Submodule method
outputFifo.enqg(data-1); availability in the

endrule statements of a rule
becomes implicit rule

rule ruleB (fifoA.notEmpty && fifoB.notFull); guard)
let data = fifoA.first; fifoA.deq;
fifoB.enq(data+1);
endrule A rule can fire only if its rule guard is true

Day 2 Agenda

 Traffic Patterns in CNN Accelerators
— Scatter
— Gather
— Local

* Fixed Point Adder/Multiplier

Traffic Patterns in Computer Systems

 CMPs

Dynamic
all-to-all traffic

HH

H =

« MPSoCs

Static fixed
traffic

* DNN Accelerators

Spatial CNN Accelerator Structure

PE Array

Network-on-chip

(Interconnection
Network)

DRAM

v
Spatial processing over PEs

Traffic Patterns in CNN Accelerators

 Scatter

One-to-All One-to-Many

E.g., filter weight and/or input feature map distribution

Traffic Patterns in CNN Accelerators
 Gather

All-to-one Many-to-one
E.g., partial sum gathering

Traffic Patterns in CNN Accelerators

 Local

- Key optimization to
remove traffic between
GBM and PE array and
maximize data reuse in
the PE array

Many one-to-one

e.g., psum accumulation

Traffic Patterns in Computer Systems

HH

H =

 CMPs « MPSoCs * DNN Accelerators
Dynamic Static fixed Z‘;::::
all-to-all traffic traffic

Local

Day 2 Agenda

« BSV Sequential Logic implementation and
execution model
— Memory Elements
— Latency-Inter-module Communication
— Modules with Multiple Rules

 Traffic Patterns in CNN Accelerators

— Scatter
— Gather
— Local

* Fixed Point Adder/Multiplier

Spatial CNN Accelerator Structure

PE Array

Network-on-chip

(Interconnection
Network)

DRAM

!

Contains fixed point adders/
mutlipliers

Fixed Point Arithmetic

« Unsigned Fixed Point Representation

— Qn.m format: n-bit for integer bits m-bit for fractional
bits (e.g., Q3.5 : 3-bit for integers and 5-bit for
fractions.)

— Example) 010.10100 =2 + 2 + 1/3 = 2.625

S S I P S S N T
0 1 0 1 0 1 0 0

Fixed Point Arithmetic

- Signed Fixed Point Representation
— Represent in 2’'s complement format

— Recall that the MSB (sign-bit) in a signed binary
number actually represents -2(m1) where m is the
number of bits in a binary number. (e.g., 1011, =-23 +
21 + 20 = -5)

— Example) -3.25 =-4 + 0.75 = 100.0000 + 000.1100 =
100.1100

1 0 0 1 1 0 0 0

Fixed Point Arithmetic

« Signed Fixed Point Addition

— The same process as binary integer addition

— Example) -3.25 + 2.625 = 100.11000 + 010.10100 =
111.01100 = -4 + 3.375 =-0.625

1 0 0 1 1 0 0 0

Fixed Point Arithmetic

« Signed Fixed Point Multiplication

— The same process as binary integer multiplication

1) Sign-extend each operand (double bit width of
original)

2) Perform binary integer multiplication

3) Truncate extra bits for integer and fraction bits
iIndependently

Fixed Point Arithmetic

« Signed Fixed Point Multiplication

— Example) Using Q1.2 format;
-0.5x1.5=-0.75

\1\1\1\1\1\1.\1\0\

 [eToTo oo 1 1To]

1\110\1

-2 +1 +0.25 =-0.75

[Lab1] DataReplicator

* Repeating Data to Support Broadcasting

Network-on-chip *
(Interconnection
Network)

[Lab1] Data Replicator

 Module Description

— External module requests data repeat using “putData”
method

method Action putData(RepData value, Repldx numRepeats)

— Another external module receives data using
“getData” method
method ActionValue#(RepData) getData

« Spec
— DataReplicator module repeats putting “value” for
“‘numRepeats” times to the method getData

[Lab1] Data Replicator

 Example
rule genTestPattern;
replicator. putData(15, 3); // Repeat 15 three times
endrule

rule checkOutput;
let outData <- replicator.getData;
$display(“Received %d”, outData);
endrule

* Print-out message
Received 15
Received 15
Received 15

[Lab2] Fixed Point Adder and Multiplier

* Designing fixed point adder / multiplier

rule

genTestPattern

rule
checkResults

mkTestBenc

TODO

[Lab2] Fixed Point Adder and Multiplier

« Spec
— Fixed point type: Q3.12 (sign-bit + 3 integer bits + 12
fraction bits = 16 bit)

— For module interface, implement LI interface
 All the input/output FIFOs are pipelineFIFO

— Addition / multiplication takes one cycle

— Use “+” and “ * ” to perform binary integer addition /
multiplication (don’t need to implement your own
adder/multiplier)

« Useful statements
— Bit extension: signExtend() / zeroExtend()
— Bit selection: [] (e.g., Bit#(6) a =6’b11010010;
// a[7:5] == 3’'b110
// a[0] = 1°b0)

[Lab2] Fixed Point Adder and Multiplier

« Advanced topic [optional]

— Parameterize the adder / multiplier so that your
adder/multiplier works with any fixed point settings

« Useful statement examples (hints)

— typedef 5 IntegerBits;

— typedef TAdd#(IntegerBits, TAdd#(SignBits,
FractionBits) FixedBits;

— Bit#(IntegerBits) intBits;
— intBits = fixedBits [valueOf(FixedBits) —
valueOf(SignBits) -1 : valueOf(fractionBits)];

— Bit#(TAdd#(FixedBits, FixedBits)) extendedBit;

