
Designing CNN Accelerators
Day 2

Dec 27, 2017

Georgia Institute of Technology
Synergy Lab (http://synergy.ece.gatech.edu)

Hyoukjun Kwon
(hyoukjun@gatech.edu)

@SNU

Day 2 Agenda
• BSV Sequential Logic implementation and

execution model
– Memory Elements
– Latency-Inter-module Communication
– Modules with Multiple Rules

• Traffic Patterns in CNN Accelerators
– Scatter
– Gather
– Local

• Fixed Point Adder/Multiplier

2

Memory Element Instantiation

3

• Memory Elements as submodules
– Memory elements (register, FIFO) are implemented

as independent modules
– We instantiate memory elements as submodules

• (ModuleInterfaceName) (user-defined module name) <-
(ModuleName in implementation)

– Ex)
Reg#(Bit#(16)) myReg <- mkReg(0);

A polymorphic
Interface “Reg”

Load implenetation in
module ”mkReg”

Memory Elements in BSV

4

• Register
– Initialization (module name)
• mkReg(initial_value): Assign an initial value
• mkRegU: Don’t assign an initial value

– Operations
• Read: multiple read within a cycle is allowed
• Write (‘<=‘): only one write within a cycle is allowed

written value is visible in the next cycle

– Operation scheduling
• Read < Write

Memory Elements in BSV

5

• Register
– Example
Reg#(Bit#(4)) regA <- mkReg(2);
Reg#(Bit#(4)) regB <- mkRegU;
rule doExample;
regA <= regA + 1;
regB <= regA;

endrule

Cycle 0 1 2 3 4

regA Value 2 3 4 5 6

regB Value ? 2 3 4 5

regA value is read twice
Written data is visible in the next
cycle

Memory Elements in BSV

6

• FIFO (First-In-First-Out)
– Operations
• enq: put a new element to the tail of a FIFO
• deq: remove the head element (if exists)
• first: returns the head element value (if exists)
• notEmpty: returns true if the FIFO is not empty

– Initialization
• mkPipelineFifo: enq/first occurs after deq
• mkBypassFifo: deq/first occurs after enq

Memory Elements in BSV

7

• FIFO (First-In-First-Out)
– Declaration Syntax
• Fifo#(Num_Elements, Types)

user-defined_fifo_name <- (initilization)
• Ex) Fifo#(3, Bit#(4)) myFifo <- mkPipelineFifo

– Automatic rule/method stall
• If a FIFO has no element and a rule tries to run ‘deq’ or ‘first’
• If a FIFO is full and a rule tries to run ‘enq’
* For both cases, the rule does not fire (execute) at that cycle

The stalled rule runs as soon as an element is enqued into the FIFO
(for deq/first) or an element is dequed from the FIFO (for enq).

Memory Elements in BSV

8

• FIFO (First-In-First-Out)
– Operation Example

rule
ProduceData

rule
ConsumeData

enq first

deq

Memory Elements in BSV

9

• FIFO (First-In-First-Out)
– Operation Example1
Reg#(Bit#(16)) cycleReg <- mkReg(0);
Fifo#(2, Bit#(4)) fifoA <- mkPipelineFifo;

rule countCycles;
cycleReg <= cycleReg + 1;

endrule

rule produceData;
fifoA.enq(truncate(cycleReg));

endrule
...

Memory Elements in BSV

10

• FIFO (First-In-First-Out)
– Operation Example1
rule consumeData;
fifoA.deq; $display(“Consumed %d”, fifoA.first);

endrule
...
Cycle 0 1 2 3 4

fifoA.enq 0 1 2 3 4

fifoA.first x 0 1 2 3

consumeData fire? x o o o o

What happens when we use bypass FIFO?

Rule execution order: consumeData -> produceData

Memory Elements in BSV

11

• FIFO (First-In-First-Out)
– Operation Example2
Reg#(Bit#(16)) cycleReg <- mkReg(0);
Fifo#(2, Bit#(4)) fifoA <- mkBypassFifo;

rule countCycles;
cycleReg <= cycleReg + 1;

endrule

rule produceData;
fifoA.enq(truncate(cycleReg));

endrule
...

Memory Elements in BSV

12

• FIFO (First-In-First-Out)
– Operation Example2
rule consumeData;
fifoA.deq; $display(“Consumed %d”, fifoA.first);

endrule
...

Cycle 0 1 2 3 4

fifoA.enq 0 1 2 3 4

fifoA.first 0 1 2 3 4

consumeData fire? o o o o o

Rule execution order: produceData -> consumeData

Memory Elements in BSV

13

• FIFO (First-In-First-Out)
– Operation Example

rule
ProduceData

rule
ConsumeData

enq first

deq

stall (isFull?) stall (isEmpty?)

Implicit	stall	control	based	on	FIFO	occupancy
Enables “latency insensitive inter-module communication”

Day 2 Agenda
• BSV Sequential Logic implementation and

execution model
– Memory Elements
– Latency-Inter-module Communication
– Modules with Multiple Rules

• Traffic Patterns in CNN Accelerators
– Scatter
– Gather
– Local

• Fixed Point Adder/Multiplier

14

LI Inter-Module Communication

15

• Latency-insensitive (LI) inter-module
communication model

Method 1

Method 2

Method N

…

Module
Interface

Module B

rulesrules

Module A

Rules wait until (1) all the necessary data is in input FIFOs and
(2) at least one slot of output FIFO is available Why	is	it	good?

Module Interface and Methods

16

• Defining an interface (syntax)
// interface definition
interface (Interface_Name);
// method definition
method (return_type) (method_name) (arguments);
// an interface can contain multiple methods

endinterface

Module Interface and Methods

17

• Example
interface ALU;
method Action putArguments(OpCode newOp,

Word newArgA, Word newArgB);
method ActionValue#(Word) getResults;
method Bool isInitialized;

endinterface

Action method: Similar to “void” in C. Involves state updates
(register, FIFO, etc.)

ActionValue#(T) method: Involves state updates (register, FIFO,
etc.) + returns a value with type T

Module Interface and Methods

18

• Implementing an interface – example
module mkExampleModule(ALU);

// module implementations (omited)
//....

method Action putArguments(OpCode newOp,
Word newArgA, Word newArgB);

opCode <= newOp; //....
endmethod

method ActionValue#(Word) getResults;
isValidArgs <= False; return res;

endmethod

method Bool isInitialized = inited;

endmodule

state	update

returns	a	value

return	values	can	also	
be	described	in	this	
manner

LI Inter-Module Communication

19

• Implementations

Method 1

Method 2

Method N

…

Module
Interface

Module B

rulesrules

Module A

(1) methods just enque data to input FIFOs and deque from
output FIFOs

(2) rules deq input values from input FIFOs and enq output
values to output FIFOs

LI Inter-Module Communication

20

• Implementation Example
interface ModuleBIfc;
method Action sendData(Bit#(16) newData);
method ActionValue#(Bit#(16)) getData;

endinterface Required.	Why?

Method 1

Method 2

Method N

…

Module
Interface

Module B

rulesrules

Module A

LI Inter-Module Communication

21

• Implementation Example
module mkModuleB(ModuleBIfc);

Fifo#(2, Bit#(16)) inputFifo <- mkPipelineFifo;
Fifo#(2, Bit#(16)) outputFifo <- mkPipelineFifo;

rule incValue;
let data = inputFifo.first; inputFifo.deq;
outputFifo.enq(data+1);

endrule

method Action sendData(Bit#(16) newData);
inputFifo.enq(newData);

endmethod

method ActionValue#(Bit#(16)) getData;
outputFifo.deq; return outputFifo.first;

endmethod

endmodule

Day 2 Agenda
• BSV Sequential Logic implementation and

execution model
– Memory Elements
– Latency-Inter-module Communication
– Modules with Multiple Rules

• Traffic Patterns in CNN Accelerators
– Scatter
– Gather
– Local

• Fixed Point Adder/Multiplier

22

Modules with Multiple Rules

23

• Rule Scheduling
– Rules are fundamental atomic unit of hardware

behavior in BSV
• [All-or-Nothing] Run entire statements in a rule. If at least

one of the statements cannot be executed at a certain cycle
(e.g., enq to a full FIFO), the rule stalls.

– BSV scheduler tries to execute as many rules an
possible in parallel

– Executing all the rules might not be possible

When?

Modules with Multiple Rules

24

• Rule conflict
rule incValue;

let data = inputFifo.first; inputFifo.deq;
outputFifo.enq(data+1);

endrule

rule decValue;
let data = inputFifo.first; inputFifo.deq;
outputFifo.enq(data-2);

endrule What	happens?

Modules with Multiple Rules

25

• Rule conflict

ruleA

ruleB

Resource Conflict
(Similar to Structural Hazard)

enq

enq

Although both ruleA and ruleB are ready to fire, only one of
them can fire each cycle.

Each	method	in	an	interface	can	be	called	only	once	at	each	cycle

Modules with Multiple Rules

26

• Independent scheduling

RuleB cannot fire beacuse its output FIFO is full
Although ruleB cannot fire, ruleA can fire.

ruleA ruleB

Empty Slot Occupied Slot

Modules with Multiple Rules

27

• Cyclic dependence
Fifo#(2, Bit#(16)) fifoA <- mkBypassFifo;
Fifo#(2, Bit#(16)) fifoB <- mkBypassFifo;

rule ruleA;
let data = fifoB.first; fifoB.deq;
fifoA.enq(data-1);
outputFifo.enq(data-1);

endrule

rule ruleB;
let data = fifoA.first; fifoA.deq;
fifoB.enq(data+1);

endrule
Any	problem?

Modules with Multiple Rules

28

• Cyclic dependence

ruleA

ruleB

first, deq

FIFO
 B

FIFO
 A

enq

first, deqenq

Because enqued data to a bypassFIFO canbe dequed at the
same cycle, ruleA and ruleB forms a data dependence cycle

Solution?

Modules with Multiple Rules

29

• Cyclic dependence

We can delay the visibility of enqued data at a certain point.
This breaks the data dependence cycle within the same cycle

ruleA

ruleB

Temporal
Barrier

first, deq

FIFO
 B

FIFO
 A

enq

first, deqenq

Modules with Multiple Rules

30

• Cyclic dependence
Fifo#(2, Bit#(16)) fifoA <- mkBypassFifo;
Fifo#(2, Bit#(16)) fifoB <- mkPipelineFifo;

rule ruleA;
let data = fifoB.first; fifoB.deq;
fifoA.enq(data-1);
outputFifo.enq(data-1);

endrule

rule ruleB;
let data = fifoA.first; fifoA.deq;
fifoB.enq(data+1);

endrule How	to	analyze	the	timing?

Method Scheduling Order

31

Module Method scheduling	order

PipelineFIFO first	<	deq <	enq

BypassFifo enq <	first	<	deq

Registers read	<	write

t t+1

P-FIFO
deq

P-FIFO
enq

P-FIFO
first

B-FIFO
first

B-FIFO
deq

B-FIFO
enq

Reg
Read

Reg
Write

Cycle

Cycle t

Order among methods of
different modules is flexible
(e.g., P-FIFO first can be either
before or after B-FIFO enq)

Rule Scheduling Analysis

32

• Original Version

ruleA

ruleB

first, deq

FIFO
 B

FIFO
 A

enq

first, deqenq

Submodules ruleA Order ruleB

FIFOA enq < deq,	first

FIFOB deq,	first > enq

Inconsistent!
Cannot	fire	
simultaneously

Rule Scheduling Analysis

33

• Fixed Version

Submodules ruleA Order ruleB

FIFOA enq < deq,	first

FIFOB deq,	first < enq

Consistent!	Can	fire	in	parallel

ruleA

ruleB

Temporal
Barrier

first, deq

FIFO
 B

FIFO
 A

enq

first, deqenq

Rule Guard

34

• Revisiting fixed cyclic dependence example
Fifo#(2, Bit#(16)) fifoA <- mkBypassFifo;
Fifo#(2, Bit#(16)) fifoB <- mkPipelineFifo;

rule ruleA;
let data = fifoB.first; fifoB.deq;
fifoA.enq(data-1);
outputFifo.enq(data-1);

endrule

rule ruleB;
let data = fifoA.first; fifoA.deq;
fifoB.enq(data+1);

endrule

(fifoA.notFull &&	fifoB.notEmpty);

(fifoA.notEmpty &&	fifoB.notFull);

Implicit rule guard
(Submodule method
availability in the
statements of a rule
becomes implicit rule
guard)

A rule can fire only if its rule guard is true

Day 2 Agenda
• BSV Sequential Logic implementation and

execution model
– Memory Elements
– Latency-Inter-module Communication
– Modules with Multiple Rules

• Traffic Patterns in CNN Accelerators
– Scatter
– Gather
– Local

• Fixed Point Adder/Multiplier

35

Traffic Patterns in Computer Systems

36

• CMPs

Core Core

Core Core

Core GPU

Sen
sor

Comm

• MPSoCs

GBM NoC

PE

PE

PE

PE

• DNN Accelerators

Dynamic
all-to-all traffic

Static fixed
traffic ?

Spatial CNN Accelerator Structure

37

Global	
Memory
(GBM)

Network-on-chip
(Interconnection	

Network)

PE PE PE...

PE PE PE...

PE PE PE

Spatial processing over PEs

D
R

A
M

PE Array

Traffic Patterns in CNN Accelerators

38

• Scatter

One-to-All

GBM NoC

PE

PE

PE

PE

One-to-Many

GBM NoC

PE

PE

PE

PE

E.g., filter weight and/or input feature map distribution

Traffic Patterns in CNN Accelerators

39

• Gather

All-to-one

GBM NoC

PE

PE

PE

PE

Many-to-one

GBM NoC

PE

PE

PE

PE

E.g., partial sum gathering

Traffic Patterns in CNN Accelerators

40

• Local

Many one-to-one

GBM NoC

PE

PE

PE

PE

- Key optimization to
remove traffic between
GBM and PE array and
maximize data reuse in
the PE array

e.g., psum accumulation

Traffic Patterns in Computer Systems

41

• CMPs

Core Core

Core Core

Core GPU

Sen
sor

Comm

• MPSoCs

GBM NoC

PE

PE

PE

PE

• DNN Accelerators
Scatter
Gather
Local

Dynamic
all-to-all traffic

Static fixed
traffic

Day 2 Agenda
• BSV Sequential Logic implementation and

execution model
– Memory Elements
– Latency-Inter-module Communication
– Modules with Multiple Rules

• Traffic Patterns in CNN Accelerators
– Scatter
– Gather
– Local

• Fixed Point Adder/Multiplier

42

Spatial CNN Accelerator Structure

43

Global	
Memory
(GBM)

Network-on-chip
(Interconnection	

Network)

PE PE PE...

PE PE PE...

PE PE PE

Contains fixed point adders/
mutlipliers

D
R

A
M

PE Array

Fixed Point Arithmetic

44

• Unsigned Fixed Point Representation
– Qn.m format: n-bit for integer bits m-bit for fractional

bits (e.g., Q3.5 : 3-bit for integers and 5-bit for
fractions.)

– Example) 010.10100 = 2 + ½ + 1/3 = 2.625

22 21 20 . 2-1 2-2 2-3 2-4 2-5

0 1 0 1 0 1 0 0

Fixed Point Arithmetic

45

• Signed Fixed Point Representation
– Represent in 2’s complement format

– Recall that the MSB (sign-bit) in a signed binary
number actually represents -2(m-1), where m is the
number of bits in a binary number. (e.g., 10112 = -23 +
21 + 20 = -5)

– Example) -3.25 = -4 + 0.75 = 100.0000 + 000.1100 =
100.1100

-22 21 20 . 2-1 2-2 2-3 2-4 2-5

1 0 0 1 1 0 0 0

Fixed Point Arithmetic

46

• Signed Fixed Point Addition
– The same process as binary integer addition

– Example) -3.25 + 2.625 = 100.11000 + 010.10100 =
111.01100 = -4 + 3.375 = -0.625

-22 21 20 . 2-1 2-2 2-3 2-4 2-5

1 0 0 1 1 0 0 0

0 1 0 1 0 1 0 0

+
1 1 1 0 1 1 0 0

Fixed Point Arithmetic

47

• Signed Fixed Point Multiplication
– The same process as binary integer multiplication

1) Sign-extend each operand (double bit width of
original)

2) Perform binary integer multiplication
3) Truncate extra bits for integer and fraction bits

independently

Fixed Point Arithmetic

48

• Signed Fixed Point Multiplication
– Example) Using Q1.2 format;

- 0.5 x 1.5 = -0.75

1 1 1 0

0 1 1 0x

1 11 1

0 00 0

0 1 0 01 11 1
-2 +1 +0.25 =	-0.75

[Lab1] DataReplicator

• Repeating Data to Support Broadcasting

49

Global	
Memory
(GBM)

Network-on-chip
(Interconnection	

Network)

PE PE PE...

PE PE PE...

PE PE PE

D
R

A
M

PE Array

GBM NoC

PE

PE

PE

PE

[Lab1] Data Replicator

• Module Description
– External module requests data repeat using “putData”

method
method Action putData(RepData value, RepIdx numRepeats)

– Another external module receives data using
“getData” method
method ActionValue#(RepData) getData

• Spec
– DataReplicator module repeats putting “value” for

“numRepeats” times to the method getData
50

[Lab1] Data Replicator
• Example

rule genTestPattern;
replicator. putData(15, 3); // Repeat 15 three times

endrule

rule checkOutput;
let outData <- replicator.getData;
$display(“Received %d”, outData);

endrule

• Print-out message
Received 15
Received 15
Received 15

51

[Lab2] Fixed Point Adder and Multiplier

• Designing fixed point adder / multiplier

52

putArgA

putArgB

getRes

…

Module
Interface

mkAdder

rule
doAddition

rule
genTestPattern

mkTestBench

rule
checkResults

TODO

[Lab2] Fixed Point Adder and Multiplier
• Spec

– Fixed point type: Q3.12 (sign-bit + 3 integer bits + 12
fraction bits = 16 bit)

– For module interface, implement LI interface
• All the input/output FIFOs are pipelineFIFO

– Addition / multiplication takes one cycle
– Use “+” and “ * ” to perform binary integer addition /

multiplication (don’t need to implement your own
adder/multiplier)

• Useful statements
– Bit extension: signExtend() / zeroExtend()
– Bit selection: [] (e.g., Bit#(6) a = 6’b11010010;

// a[7:5] == 3’b110
// a[0] = 1’b0)

53

[Lab2] Fixed Point Adder and Multiplier

• Advanced topic [optional]
– Parameterize the adder / multiplier so that your

adder/multiplier works with any fixed point settings

• Useful statement examples (hints)
– typedef 5 IntegerBits;
– typedef TAdd#(IntegerBits, TAdd#(SignBits,

FractionBits) FixedBits;
– Bit#(IntegerBits) intBits;
– intBits = fixedBits [valueOf(FixedBits) –

valueOf(SignBits) -1 : valueOf(fractionBits)];
– Bit#(TAdd#(FixedBits, FixedBits)) extendedBit;

54

