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Day 2 Agenda
• BSV Sequential Logic implementation and 

execution model
– Memory Elements
– Latency-Inter-module Communication
– Modules with Multiple Rules

• Traffic Patterns in CNN Accelerators
– Scatter
– Gather
– Local

• Fixed Point Adder/Multiplier
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Memory Element Instantiation
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• Memory Elements as submodules
– Memory elements (register, FIFO) are implemented 

as independent modules
– We instantiate memory elements as submodules

• (ModuleInterfaceName) (user-defined module name) <-
(ModuleName in implementation)

– Ex) 
Reg#(Bit#(16)) myReg <- mkReg(0);

A polymorphic
Interface “Reg”

Load implenetation in 
module ”mkReg” 



Memory Elements in BSV
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• Register
– Initialization (module name)
• mkReg(initial_value): Assign an initial value
• mkRegU: Don’t assign an initial value

– Operations
• Read: multiple read within a cycle is allowed
• Write (‘<=‘ ): only one write within a cycle is allowed

written value is visible in the next cycle

– Operation scheduling
• Read < Write



Memory Elements in BSV
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• Register
– Example
Reg#(Bit#(4)) regA <- mkReg(2);
Reg#(Bit#(4)) regB <- mkRegU;
rule doExample;
regA <= regA + 1;
regB <= regA;

endrule

Cycle 0 1 2 3 4

regA Value 2 3 4 5 6

regB Value ? 2 3 4 5

regA value is read twice
Written data is visible in the next 
cycle



Memory Elements in BSV
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• FIFO (First-In-First-Out)
– Operations
• enq: put a new element to the tail of a FIFO
• deq: remove the head element (if exists)
• first: returns the head element value (if exists)
• notEmpty: returns true if the FIFO is not empty

– Initialization
• mkPipelineFifo: enq/first occurs after deq
• mkBypassFifo: deq/first occurs after enq



Memory Elements in BSV
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• FIFO (First-In-First-Out)
– Declaration Syntax
• Fifo#(Num_Elements, Types) 

user-defined_fifo_name <- (initilization)
• Ex) Fifo#(3, Bit#(4)) myFifo <- mkPipelineFifo

– Automatic rule/method stall
• If a FIFO has no element and a rule tries to run ‘deq’ or ‘first’
• If a FIFO is full and a rule tries to run ‘enq’
* For both cases, the rule does not fire (execute) at that cycle

The stalled rule runs as soon as an element is enqued into the FIFO 
(for deq/first) or an element is dequed from the FIFO (for enq).



Memory Elements in BSV
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• FIFO (First-In-First-Out)
– Operation Example

rule
ProduceData

rule
ConsumeData

enq first

deq



Memory Elements in BSV

9

• FIFO (First-In-First-Out)
– Operation Example1
Reg#(Bit#(16)) cycleReg <- mkReg(0); 
Fifo#(2, Bit#(4)) fifoA <- mkPipelineFifo;

rule countCycles;
cycleReg <= cycleReg + 1;

endrule

rule produceData;
fifoA.enq(truncate(cycleReg));

endrule
...



Memory Elements in BSV
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• FIFO (First-In-First-Out)
– Operation Example1
rule consumeData;
fifoA.deq; $display(“Consumed %d”, fifoA.first);

endrule
...
Cycle 0 1 2 3 4

fifoA.enq 0 1 2 3 4

fifoA.first x 0 1 2 3

consumeData fire? x o o o o

What happens when we use bypass FIFO?

Rule execution order: consumeData -> produceData



Memory Elements in BSV
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• FIFO (First-In-First-Out)
– Operation Example2
Reg#(Bit#(16)) cycleReg <- mkReg(0); 
Fifo#(2, Bit#(4)) fifoA <- mkBypassFifo;

rule countCycles;
cycleReg <= cycleReg + 1;

endrule

rule produceData;
fifoA.enq(truncate(cycleReg));

endrule
...



Memory Elements in BSV
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• FIFO (First-In-First-Out)
– Operation Example2
rule consumeData;
fifoA.deq; $display(“Consumed %d”, fifoA.first);

endrule
...

Cycle 0 1 2 3 4

fifoA.enq 0 1 2 3 4

fifoA.first 0 1 2 3 4

consumeData fire? o o o o o

Rule execution order: produceData -> consumeData



Memory Elements in BSV
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• FIFO (First-In-First-Out)
– Operation Example

rule
ProduceData

rule
ConsumeData

enq first

deq

stall (isFull?) stall (isEmpty?)

Implicit	stall	control	based	on	FIFO	occupancy
Enables “latency insensitive inter-module communication”
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LI Inter-Module Communication
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• Latency-insensitive (LI) inter-module 
communication model

Method 1

Method 2

Method N

…

Module 
Interface

Module B

rulesrules

Module A

Rules wait until (1) all the necessary data is in input FIFOs and 
(2) at least one slot of output FIFO is available Why	is	it	good?



Module Interface and Methods
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• Defining an interface (syntax)
// interface definition
interface (Interface_Name);
// method definition
method (return_type) (method_name) (arguments);
// an interface can contain multiple methods

endinterface



Module Interface and Methods
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• Example
interface ALU;
method Action putArguments(OpCode newOp, 

Word newArgA, Word newArgB);
method ActionValue#(Word) getResults;
method Bool isInitialized;

endinterface

Action method: Similar to “void” in C. Involves state updates 
(register, FIFO, etc.)

ActionValue#(T) method: Involves state updates (register, FIFO, 
etc.) + returns a value with type T



Module Interface and Methods

18

• Implementing an interface – example
module mkExampleModule(ALU);

// module implementations (omited)
//....

method Action putArguments(OpCode newOp, 
Word newArgA, Word newArgB);

opCode <= newOp; //....
endmethod

method ActionValue#(Word) getResults;
isValidArgs <= False;  return res;

endmethod

method Bool isInitialized = inited;

endmodule

state	update

returns	a	value

return	values	can	also	
be	described	in	this	
manner



LI Inter-Module Communication
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• Implementations

Method 1

Method 2

Method N

…

Module 
Interface

Module B

rulesrules

Module A

(1) methods just enque data to input FIFOs and deque from 
output FIFOs

(2) rules deq input values from input FIFOs and enq output 
values to output FIFOs



LI Inter-Module Communication
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• Implementation Example
interface ModuleBIfc;
method Action sendData(Bit#(16) newData);
method ActionValue#(Bit#(16)) getData;

endinterface Required.	Why?

Method 1

Method 2

Method N

…

Module 
Interface

Module B

rulesrules

Module A



LI Inter-Module Communication
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• Implementation Example
module mkModuleB(ModuleBIfc);

Fifo#(2, Bit#(16)) inputFifo <- mkPipelineFifo;
Fifo#(2, Bit#(16)) outputFifo <- mkPipelineFifo;

rule incValue;
let data = inputFifo.first; inputFifo.deq;
outputFifo.enq(data+1);

endrule

method Action sendData(Bit#(16) newData);
inputFifo.enq(newData);

endmethod

method ActionValue#(Bit#(16)) getData;
outputFifo.deq; return outputFifo.first;

endmethod

endmodule
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Modules with Multiple Rules
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• Rule Scheduling
– Rules are fundamental atomic unit of hardware 

behavior in BSV
• [All-or-Nothing] Run entire statements in a rule. If at least 

one of the statements cannot be executed at a certain cycle 
(e.g., enq to a full FIFO), the rule stalls.

– BSV scheduler tries to execute as many rules an 
possible in parallel

– Executing all the rules might not be possible

When?



Modules with Multiple Rules
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• Rule conflict
rule incValue;

let data = inputFifo.first; inputFifo.deq;
outputFifo.enq(data+1);

endrule

rule decValue;
let data = inputFifo.first; inputFifo.deq;
outputFifo.enq(data-2);

endrule What	happens?



Modules with Multiple Rules
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• Rule conflict

ruleA

ruleB

Resource Conflict
(Similar to Structural Hazard)

enq

enq

Although both ruleA and ruleB are ready to fire, only one of 
them can fire each cycle.

Each	method	in	an	interface	can	be	called	only	once	at	each	cycle



Modules with Multiple Rules
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• Independent scheduling

RuleB cannot fire beacuse its output FIFO is full
Although ruleB cannot fire, ruleA can fire.

ruleA ruleB

Empty Slot Occupied Slot



Modules with Multiple Rules
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• Cyclic dependence
Fifo#(2, Bit#(16)) fifoA <- mkBypassFifo;
Fifo#(2, Bit#(16)) fifoB <- mkBypassFifo;

rule ruleA;
let data = fifoB.first; fifoB.deq;
fifoA.enq(data-1); 
outputFifo.enq(data-1);

endrule

rule ruleB;
let data = fifoA.first; fifoA.deq;
fifoB.enq(data+1);

endrule
Any	problem?



Modules with Multiple Rules
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• Cyclic dependence

ruleA

ruleB

first, deq

FIFO
 B

FIFO
 A

enq

first, deqenq

Because enqued data to a bypassFIFO canbe dequed at the 
same cycle, ruleA and ruleB forms a data dependence cycle

Solution?



Modules with Multiple Rules
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• Cyclic dependence

We can delay the visibility of enqued data at a certain point.
This breaks the data dependence cycle within the same cycle

ruleA

ruleB

Temporal
Barrier

first, deq

FIFO
 B

FIFO
 A

enq

first, deqenq



Modules with Multiple Rules
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• Cyclic dependence
Fifo#(2, Bit#(16)) fifoA <- mkBypassFifo;
Fifo#(2, Bit#(16)) fifoB <- mkPipelineFifo;

rule ruleA;
let data = fifoB.first; fifoB.deq;
fifoA.enq(data-1); 
outputFifo.enq(data-1);

endrule

rule ruleB;
let data = fifoA.first; fifoA.deq;
fifoB.enq(data+1);

endrule How	to	analyze	the	timing?



Method Scheduling Order
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Module Method scheduling	order

PipelineFIFO first	<	deq <	enq

BypassFifo enq <	first	<	deq

Registers read	<	write

t t+1

P-FIFO
deq

P-FIFO
enq

P-FIFO
first

B-FIFO
first

B-FIFO
deq

B-FIFO
enq

Reg
Read

Reg
Write

Cycle

Cycle t

Order among methods of 
different modules is flexible
(e.g., P-FIFO first can be either 
before or after B-FIFO enq)



Rule Scheduling Analysis
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• Original Version

ruleA

ruleB

first, deq

FIFO
 B

FIFO
 A

enq

first, deqenq

Submodules ruleA Order ruleB

FIFOA enq < deq,	first

FIFOB deq,	first > enq

Inconsistent!
Cannot	fire	
simultaneously



Rule Scheduling Analysis
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• Fixed Version

Submodules ruleA Order ruleB

FIFOA enq < deq,	first

FIFOB deq,	first < enq

Consistent!	Can	fire	in	parallel

ruleA

ruleB

Temporal
Barrier

first, deq

FIFO
 B

FIFO
 A

enq

first, deqenq



Rule Guard
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• Revisiting fixed cyclic dependence example
Fifo#(2, Bit#(16)) fifoA <- mkBypassFifo;
Fifo#(2, Bit#(16)) fifoB <- mkPipelineFifo;

rule ruleA;
let data = fifoB.first; fifoB.deq;
fifoA.enq(data-1); 
outputFifo.enq(data-1);

endrule

rule ruleB;
let data = fifoA.first; fifoA.deq;
fifoB.enq(data+1);

endrule

(fifoA.notFull &&	fifoB.notEmpty);

(fifoA.notEmpty &&	fifoB.notFull);

Implicit rule guard
(Submodule method 
availability in the 
statements of a rule 
becomes implicit rule 
guard)

A rule can fire only if its rule guard is true
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Traffic Patterns in Computer Systems
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• CMPs

Core Core

Core Core

Core GPU

Sen
sor

Comm

• MPSoCs

GBM NoC

PE

PE

PE

PE

• DNN Accelerators

Dynamic 
all-to-all traffic

Static fixed 
traffic ?



Spatial CNN Accelerator Structure
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Global	
Memory
(GBM)

Network-on-chip
(Interconnection	

Network)

PE PE PE...

PE PE PE...

PE PE PE

Spatial processing over PEs

D
R

A
M

PE Array



Traffic Patterns in CNN Accelerators
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• Scatter

One-to-All

GBM NoC

PE

PE

PE

PE

One-to-Many

GBM NoC

PE

PE

PE

PE

E.g., filter weight and/or input feature map distribution



Traffic Patterns in CNN Accelerators
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• Gather

All-to-one

GBM NoC

PE

PE

PE

PE

Many-to-one

GBM NoC

PE

PE

PE

PE

E.g., partial sum gathering



Traffic Patterns in CNN Accelerators
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• Local

Many one-to-one

GBM NoC

PE

PE

PE

PE

- Key optimization to 
remove traffic between 
GBM and PE array and 
maximize data reuse in 
the PE array

e.g., psum accumulation



Traffic Patterns in Computer Systems
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• CMPs

Core Core

Core Core

Core GPU

Sen
sor

Comm

• MPSoCs

GBM NoC

PE

PE

PE

PE

• DNN Accelerators
Scatter
Gather
Local

Dynamic 
all-to-all traffic

Static fixed 
traffic
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Spatial CNN Accelerator Structure
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Global	
Memory
(GBM)

Network-on-chip
(Interconnection	

Network)

PE PE PE...

PE PE PE...

PE PE PE

Contains fixed point adders/
mutlipliers

D
R

A
M

PE Array



Fixed Point Arithmetic
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• Unsigned Fixed Point Representation
– Qn.m format: n-bit for integer bits m-bit for fractional 

bits (e.g., Q3.5 : 3-bit for integers and 5-bit for 
fractions.)

– Example) 010.10100 = 2 + ½ + 1/3 =  2.625

22 21 20 . 2-1 2-2 2-3 2-4 2-5

0 1 0 1 0 1 0 0



Fixed Point Arithmetic

45

• Signed Fixed Point Representation
– Represent in 2’s complement format

– Recall that the MSB (sign-bit) in a signed binary 
number actually represents -2(m-1), where m is the 
number of bits in a binary number. (e.g., 10112 = -23 + 
21 + 20 =  -5)

– Example) -3.25 = -4 + 0.75 = 100.0000 + 000.1100 = 
100.1100

-22 21 20 . 2-1 2-2 2-3 2-4 2-5

1 0 0 1 1 0 0 0



Fixed Point Arithmetic

46

• Signed Fixed Point Addition
– The same process as binary integer addition

– Example) -3.25 + 2.625 = 100.11000 + 010.10100 = 
111.01100 = -4 + 3.375 = -0.625

-22 21 20 . 2-1 2-2 2-3 2-4 2-5

1 0 0 1 1 0 0 0

0 1 0 1 0 1 0 0

+
1 1 1 0 1 1 0 0



Fixed Point Arithmetic

47

• Signed Fixed Point Multiplication
– The same process as binary integer multiplication

1) Sign-extend each operand (double bit width of 
original)

2) Perform binary integer multiplication
3) Truncate extra bits for integer and fraction bits 

independently



Fixed Point Arithmetic
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• Signed Fixed Point Multiplication
– Example) Using Q1.2 format;

- 0.5 x 1.5 = -0.75

1 1 1 0

0 1 1 0x

1 11 1

0 00 0

0 1 0 01 11 1
-2 +1 +0.25 =	-0.75



[Lab1] DataReplicator

• Repeating Data to Support Broadcasting
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Global	
Memory
(GBM)

Network-on-chip
(Interconnection	

Network)

PE PE PE...

PE PE PE...

PE PE PE

D
R

A
M

PE Array

GBM NoC

PE

PE

PE

PE



[Lab1] Data Replicator

• Module Description
– External module requests data repeat using “putData” 

method
method Action putData(RepData value, RepIdx numRepeats)

– Another external module receives data using 
“getData” method
method ActionValue#(RepData) getData

• Spec
– DataReplicator module repeats putting “value” for 

“numRepeats” times to the method getData
50



[Lab1] Data Replicator
• Example

rule genTestPattern;
replicator. putData(15, 3); // Repeat 15 three times

endrule

rule checkOutput;
let outData <- replicator.getData;
$display(“Received %d”, outData);

endrule

• Print-out message
Received 15
Received 15
Received 15

51



[Lab2] Fixed Point Adder and Multiplier

• Designing fixed point adder / multiplier

52

putArgA

putArgB

getRes

…

Module 
Interface

mkAdder

rule
doAddition

rule
genTestPattern

mkTestBench

rule
checkResults

TODO



[Lab2] Fixed Point Adder and Multiplier
• Spec

– Fixed point type: Q3.12 (sign-bit + 3 integer bits + 12 
fraction bits = 16 bit)

– For module interface, implement LI interface
• All the input/output FIFOs are pipelineFIFO

– Addition / multiplication takes one cycle
– Use “+” and “ * ” to perform binary integer addition / 

multiplication (don’t need to implement your own 
adder/multiplier)

• Useful statements
– Bit extension: signExtend() / zeroExtend()
– Bit selection: [] (e.g., Bit#(6) a = 6’b11010010;

// a[7:5] == 3’b110 
// a[0] = 1’b0 )
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[Lab2] Fixed Point Adder and Multiplier

• Advanced topic [optional]
– Parameterize the adder / multiplier so that your 

adder/multiplier works with any fixed point settings

• Useful statement examples (hints)
– typedef 5 IntegerBits;
– typedef TAdd#(IntegerBits, TAdd#(SignBits, 

FractionBits) FixedBits;
– Bit#(IntegerBits) intBits;
– intBits = fixedBits [valueOf(FixedBits) –

valueOf(SignBits) -1 : valueOf(fractionBits)];
– Bit#(TAdd#(FixedBits, FixedBits)) extendedBit;
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